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ABSTRACT 

The focus of this dissertation is the design of a 10 Gbit/s wireline data communication 

system. The data is sent from the driver chip to the receiver chip on a printed circuit board 

(PCB). In the GHz frequency range, the parasitic effect of various circuits along the signal path 

affect the quality of the signal sent. Electrostatic Discharge (ESD) protection, PCB traces and 

packaging increase the signal loss and distortion. 

The parasitic effect of ESD protection circuits limits the maximum bandwidth for data 

transmission. The current high speed driver architectures have the driver circuit directly 

connected to the chip pads and PCB traces. This causes the chip to be prone to ESD discharge 

effects. Placing large ESD devices that shunt the output driver to ground, results in their 

parasitic capacitances acting as low pass filters that severely limit the data transmission rate. 

The packaging and PCB material are investigated in this project too. An electrical model of 

the bonding wire is developed through MATLAB® and HSPICE®. 

In order to increase the data rate, changes in the architecture are performed. The con­

tribution of this project is the introduction of on chip monolithic 4 port RF transformers at 

the driver and receiver front-end circuits. The transformers act as ESD isolation devices be­

cause they filter the low frequency components of the ESD signals before they damage the 

driver. The driver is physically isolated from the chip exterior. The signal in the driver is 

conveyed to the traces outside the chip by transformer induction behavior. Spark gap devices 

are added as ESD discharge paths too. Through investigating several transformer architec­

tures, planar interleaved transformers are fabricated and characterized to have a bandwidth 

beyond 5GHz needed for suitable data transmission. A design and characterization method of 

RF transformers by geometric scaling is presented. 
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The transformers are used in the driver and receiver circuit. Through simulation, the 

improved design proves to increase the bandwidth of the data link significantly. 
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CHAPTER 1. High Speed Data Communication 

1.1 Introduction 

In recent years, a lot of research is focused on improving high speed data communication 

systems especially in wireline data communication systems. The data rate can reach several 

Gbit/s. Several products offer around 3 Gbit/s data rate. There are several challenges that 

have to be met in order to increase the data rate to 10 Gbit/s or more. One of the challenges is 

the Electrostatic Discharge (ESD) protection devices that are placed at the driver and receiver 

to protect the chip from ESD events that can be devastating to the chip interior circuitry. The 

ESD devices, on the other hand, act as low pass filters that filter out the driver transmitted 

signal above a few GHz. It is very hard to design a chip with no ESD protection because it 

becomes very vulnerable to ESD events and the yield drops. 

Another problem that faces the design of high speed serial link is the signal loss of the 

path. The path medium in this project is printed circuit board (PCB). The loss of the PCB 

substrate attenuates the signal after few GHz. If the PCB material is FR4, the signal is 

attenuated largely in the GHz range. 

One of the contributions of this research is to design a high speed serial link with improved 

ESD protection. The architecture of the driver is to include on chip RF transformers at the 

driver. The transformers isolate the inner circuitry from outside the chip. The transformers 

can be designed to have a lower cutoff frequency that is higher that the bandwidth of the ESD 

signal. 

In addition to the transformer, spark gaps are employed at close to the bonding pads where 

can turn on, the case of ESD event, and constitute an alternate path for the ESD current to 

pass through them to ground. The design of a serial link with on-chip RF transformers requires 
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encoding and decoding schemes that incorporate the special characteristics of the transformers. 

1.2 Background 

The speed of light is around 3 x 108 m/s. If data is to be transmitted between two chips 

on a printed circuit board (PCB) at a high rate, then the speed of light should be taken into 

consideration. In [54], an NRZ (Non-return to Zero) data rate of 10 Gbit/s/pin was achieved 

in CMOS 0.18u technology. This NRZ data rate needs a clock of 5 GHz, and a total bit rise 

time, and flat time of around lOOps . The bit rise time is about 50ps. To transmit this signal 

on a PCB, the speed of a signal in the interconnect needs to be determined. It depends on the 

shape of the interconnection if it's a microstrip line (MSL) or a strip line (SL) and is inversely 

proportional to the square root dielectric constant of the laminate material of the PCB. This 

speed is typically around 1/4 to 1/3 of the speed of light. If a signal is to travel around 10 

inches then it needs around 1.7ns, which is much longer than the bit time ( lOOps). This leads 

to having more than one bit in flight between the transmitter and the receiver. 

It can be deduced that high frequency and microwave design techniques must be used 

in the design phase. This includes broadband matching, broadband RF transformer design, 

interconnect design, device parasitic effects. Many design issues that were not taken into 

consideration at low frequencies are important now. The problem of high-speed digital data 

transmission design becomes both an analog and mixed design issue in addition to a microwave 

design issue. 

1.3 Prior art 

There are several approaches to achieve wired point-to-point high-speed data communica­

tion systems. The approach depends also on the type of interconnection between the chips. 

The link might be fiber optical, microstrip line, or strip line. It also depends on the driver 

and receiver design. In [16], two different approaches are described. The first is the voltage 

mode , while the second is current mode [58]. The current mode (CM) approach is chosen 

over the voltage mode (VM) approach [6], [31]. This is due to the fact that CM provides bet-
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ter noise immunity, less power consumption, less chip area, less delay, and other advantages. 

A 700Mbps/pin was achieved using current mode logic [57], while 10Gbit/s/pin on a 0.4um 

CMOS technology was reached in [23]. 

In this project, a high-speed data transmission system is being developed such that it 

achieves high speeds, around 10-15 Gbit/s/pin at the same time it takes into consideration the 

circuit protection needs. 

1.4 This project 

This project is about designing a high-speed data transmission scheme between two chips 

on a printed circuit board. This includes several design blocks in the driver and the receiver. 

A schematic is shown in Figure 1.1. 

In the driver chip, there are two encoders for the data before being sent. One encoder is for 

the DC balancing of the data on the interconnection to prevent DC line wandering problem. 

The other encoder is designed and integrated into the multiplexer in order to focus the energy 

content of the signal transmitted around certain frequency. In this way, a termination scheme 

using mere resistors would be easier to implement at the transmitter and the receiver. 

The ESD problem is addressed in the transmitter and the receiver. The mechanism of 

ESD protection is to provide an alternate path for the current spark to be discharged to the 

substrate of the chip instead of getting to the internal circuitry and damaging active devices 

and passive devices. The classical ESD protection scheme is to place two diodes operating 

in reverse mode in the normal operating condition. When a high voltage spark is affecting 

the circuit through the pads, then large diodes would become conductive and constitute an 

D R I V E R  P C B  &  B W  
Interconnect 

R E C E I V E R  

Figure 1.1 Data transmission scheme with transformers 
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alternative current path for the charge. It should be noticed here that the gate or drain of 

a transistor is only insulated from the interconnection metal by a very thin layer of Silicon 

dioxide layer, (less than 80 Angstroms ). 

In the proposed scheme, a transformer is placed at the transmitter and receiver as an 

interface and as an insulator between the chip internal circuitry and the PCB interconnect as 

in Figure 1.2. The transformer differentiates the current signal that enters its primary and then 

generates an induced voltage at the secondary ports of the transformer. To divert the spark 

from affecting the internal circuitry, spark gap structures are placed close to the chip pads 

and have a pointing shape that are close to the interconnection so that a spark can be formed 

between the interconnect and the spark gap. In this way, a conductive path is generated when 

a huge voltage affects the chip. This path consists of the interconnection that reaches the chip 

pads from outside, the chip pads, the spark that is formed by ionizing the air or the insulation 

between the interconnection and the spark teeth, a connection between the spark gaps and the 

substrate. 

In addition to spark gaps, special care was taken into designing broadband transformers. 

The transformers need not have high selectivity factor. This is because the energy content of 

the data can have a spectrum of frequencies instead of one frequency. In this way, the task 

of designing monolithic transformers becomes less challenging because of the lower selectivity 

factor. Nevertheless, the transformer needs to have a high resonant frequency to behave in an 

inductive way in the frequency range of interest . In this project, a broadband frequency model 

of the transformer is being developed. 

The chip is attached on the PCB using Chip on Board (COB) attachment method. With 

COB, the bare chip is attached directly on the PCB using a layer of glue. The chip is not 

packaged because package leads need to be avoided in this design due to the filtering effect 

they have on high frequency components of signals. Therefore less parasitic capacitance and 

inductance is introduced into the interconnection. The other advantage is improved ground 

bounce immunity of the design. In this way, the ground potential won't be subject to changes 

due to the current that passes through the wires. One more advantage of COB is that less 
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SPARK GAP STRUCTURE 

From Di ve 

To Bonding Pads 

SPARK GAP STRUCTURE 

Figure 1.2 Transformer with spark gap structures 

discontinuity problems are faced through data transmission. This means a less noisy signal is 

transmitted. 

Bonding wire modelling is part of the high-speed data transmission design. What is needed 

is a broadband frequency model of the interconnection between the driver and the receiver 

circuitry. Modelling of the bonding wire between the chip and the printed circuit board was 

necessary to simulate the link. A model was developed using HSPICE Field Solver simulator. 

An improved laminate material used in the fabrication of PCBs was chosen for this project. 

This material, GMLIOOO, provides a low and stable dielectric constant, and therefore low loss 

for signals transmitted on the PCB. The low loss of the material would allow to reduce the 

requirements on pre-emphasis equalizer blocks at the transmitter and receiver, respectively. 
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1.5 Organization of this dissertation 

In the first chapter a method for designing RF inductors and transformers by geometric 

scaling. This method can be used to design on-chip RF inductors and transformers without 

the need for expensive high frequency electromagnetic simulators or high frequency character­

ization equipment. 

The second chapter discusses the method for designing several types of high frequency trans­

formers, and ways to improve their bandwidth. Layout techniques, in addition to calibration 

and decoupling methods, are provided. A software interface between the transformer design 

software, ASITIC, and MATLAB, is introduced to help is speeding up the design process, and 

optimizing the electrical parameters of the designed transformer. 

A special type of transformers, the toroidal transformer, is explored in the next chapter. 

Several modifications to the toroidal transformer structures are made so as to increase the 

transformer bandwidth. The choice of PCB that was used, with a brief comparative study 

between several PCB types, is presented in Chapter 5. 

Chapter 6, discusses Bonding Wires (BW). A BW modelling and design software is intro­

duced. The software provides an electrical model, in HSPICE, for the transformer in the GHz 

range using the W model. This electrical model can be used in simulating the serial link in 

HSPICE. In addition, the BW software provides analysis of the characteristic impedance of 

the BW pair and the total amount of parasitic inductance and capacitance in it. 

The next chapter provides the design of high frequency transformers as ESD protection 

devices. In addition, spark gaps work as ESD protection devices that provide an alternate 

path for the ESD charge instead of damaging the internal circuitry. 

The Driver chapter provides encoding methods for the driver of the serial link. Two en­

coding schemes are introduced. These include driver encoder and bus encoder. In addition, 

broadband matching is discussed. 
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CHAPTER 2. Design of RF inductors in CMOS 0.18// by geometric 

scaling 

2.1 Abstract 

In this chapter, research results about design and characterization of geometrically scaled 

RF inductors and transformers are presented in comparison to an Electromagnetic (EM) sim­

ulation, and to on-chip design and characterization results. The geometries of the on-chip 

inductor are scaled up by a factor a. The scaled up model is characterized at a scaled fre­

quency range of 1/a, When the frequency is scaled back to the original range, the scattering 

parameters extracted from the scaled model reflect the behavior of the original on-chip model. 

A set of geometrically scaled models are compared to simulations in ASITIC [43]. The charac­

terization results show an agreement in Sn within 6.7%, and in fres within 17.4%. On-chip RF 

inductors were fabricated in a CMOS 0.18/u technology while the scaled models were fabricated 

on a flexible circuit material with 2oz and 3oz copper. The characterization results show an 

agreement in Sn within 8% and in resonance frequency within 20%. 

2.2 Introduction 

Nowadays, there is considerable research focusing on design and characterization of on-

chip RF inductors fabricated on silicon integrated circuits. The design and characterization 

of RF inductors can be a considerable task with fabrication time lasting for weeks. The 

fabrication of the RF inductors can be expensive due to the large chip area occupied by test 

and calibration structures. Simulation of RF inductors that have non-rectilinear geometries 

can be computationally intensive for the electromagnetic simulator (EM) simulator especially 
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if a large number of frequency points are required. In this chapter, a method is presented for 

predicting the behavior of RF inductors before fabrication by the method of geometric scaling 

(GS). The GS method can help in achieving a single pass design. 

The organization of this chapter is as follows. This section describes the GS method and 

the effect of geometry and frequency scaling on the electrical parameters of the RF inductor 

equivalent electrical model. Afterwards, a geometrically scaled RF inductor is characterized 

and compared to the original model in ASITIC. Then an on-chip characterized inductor is 

compared to a geometrically scaled RF inductor. Afterwards, sources of error, and approxima­

tions are discussed. This chapter is concluded with a summary of the results obtained through 

this research. 

This research uses the concept of dimensional analysis by Buckingham [10], and [11]. The 

basic idea is to scale the geometries of the on-chip RF inductor by a scaling factor a in the 

x, y, and z direction. This new dimension should be comparable to traces that can be etched 

on a copper clad laminate or a rigid printed circuit board. As a result, the frequency range 

of the new scaled inductor is reduced by the same factor a, and the scattering parameters are 

extracted for the scaled model. Afterwards, the frequency range of the extracted scattering 

parameters is scaled up by the factor a to return to the original on-chip frequency range. As for 

the magnitude and phase of S parameters, they are left unchanged. This new scaled parameter 

set reflects the behavior of the on-chip RF inductor at the original operating frequency. As a 

result, expensive test equipment calibrated to several GHz frequency range is not needed for 

this measurement. 

The geometric scaling of the on-chip RF inductors is not completely cancelled out by the 

frequency inverse scaling [3]. Figure 2.1 presents an electrical model of the on-chip inductor 

[69], and Table 2.1 lists the model electrical parameters where pm and psi are the resistivity of 

the conductor and substrate respectively, I, w, t and are the length, width, and thickness of 

the conductor respectively. 

Q  is the mutual inductance parameter that depends on the geometric mean distance be­

tween the conductor segments, sox, and £sl are the dielectric material constants for the oxide 
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AAA/ 

Figure 2.1 Inductor electrical model 

layer and the substrate respectively. to x  and hSi are the oxide thickness and the substrate 

thickness respectively, a is the scaling factor defined as the new geometrical dimension over 

the old geometrical dimension. The effect of scaling on the model electrical parameters is 

shown in the second column of Table 2.1. 

While the capacitances Co x  and C'S I  do scale up by a factor a, as in equations D and E, 

Zc remains essentially unchanged because the scale of o in C is cancelled by the I/o scale in 

the frequency. Similarly, as the inductance L scales up by a factor a,  as in equation B, Z ̂  

remains unchanged because the scale of a in L is cancelled by the 1/a scale in the frequency. 

Note that geometric scaling by a affects R s  and R s l  because there is obviously no frequency 

component in the ideal resistor model. As a result, additional resistance should be added to the 

scaled model resistance to reflect the actual resistance of the original model. This resistance 

is equal to: 

•^compensation = -^on chip — -^scaled model (2-1) 

— Ron chip 

since -Rgeom scaled -Ron chip- Compensation for the resistance can be done by adding chip 

resistances (lumped or distributed) to the geometrically scaled model before scattering pa­
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rameters are extracted. Another compensation method is to add the compensation resistors 

mathematically after scattering parameters extraction. 

Table 2.1 Inductor electrical parameters 

Parameters Scaled Parameters Eqn. Ref. 

a, = a, = ; - ^ [69] 

L = 2l + 0.5 + L = 21 { in + 0.5 + ^3^} B [69] 

M = 2ZQ M = a - C [69] 

= = D [69] 

= = E [69] 

ZL  = jwL ZL  = j%f • aL = jwL F 

zc = jàc ZC = J^d ~ l^c G  

2.3 Simulations of RF inductors in ASITIC 

In this example, an on-chip inductor is geometrically scaled up by a factor a. The scaled up 

inductor is fabricated on a flexible printed circuit material such as Pyralux® from Dupont®. 

It is a copper clad laminate, a depends on the thickness of the on-chip inductor metal layer 

^on-chip; and the metal layer thickness of the scaled up model tpcB- It is calculated as 

a = tpCB . (2.2) 
ton—chip 

The scaled model is built on a thick substrate that presents a scaling of the original on-chip 

substrate. It has the same dielectric constant of the original substrate. A fabrication step for 

the scaled model, such as etching of the copper clad laminate, is easily performed. Another 

method is to use a rigid PCB and mill the traces on it and remove the extra copper. Figure 2.2 

presents the scaled up model of the inductor fabricated on flexible printed circuit material for 
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a = 204. Figure 2.3 shows the scaled model for a = 136. To simulate the effect of dielectric 

material between the transformer and the substrate, a Kapton® sheet was placed between the 

transformer and a wafer on top. The wafer represents the loss that the inductor experiences 

from the substrate in its original on chip model. The wafer's resistivity is scaled relative to 

the chip substrate. 

The scaled model is then characterized over a frequency range that is the original desired 

frequency range through two port S parameter measurements [67], as shown in Figure 2.5, and 

Figure 2.6. Since resistance is not scaled with scaling geometry, compensation resistances are 

added mathematically to the scaled model after characterization. The inductor was simulated 

in ASITIC [43] as in Figure 2.4. 

For a = 136, the scaled model is compared to the original simulated model in Table 2.2 

in terms of fres, and ,S'ii.res. /res, the resonant frequency of the original model, is 14.8 GHz. 

fres, the resonant frequency of the measured model, is 99.9 MHz. When scaled back, /res is 

13.6 GHz. Compared to fres = 14.8 GHz, the percentage error in fres is 8.11%. Slices of the 

original model is 0.819. «S'il,res of the measured model is 0.872. Compared to ,S'i j,res = 0.872, 

the percentage error in S\itres is 6.47%. 

For a — 204, the scaled model is compared to the original simulated model in Table 2.3 

in terms of fres, and Sn rf;s. fres, the resonant frequency of the measured model, is 59.9 MHz. 

When scaled back, fres is 12.22 GHz. Compared to fres = 14.8 GHz, the percentage error 

in fres is 17.4%. SnjT.es of the measured model is 0.834. Compared to Sn,res — 0.834, the 

percentage error in 5nires is 1.83%. 

Table 2.4 presents the inductances for a = 1, a = 136, and a = 204 for the frequency range 

of 1 — 4 GHz. The percentage error in L is < 9.6% for a = 136, and is < 2.25% for a — 204. 

The low error represents the good agreement between the scaled model and the original model. 

2.4 Practical design: On-Chip RF inductors 

Two RF inductors were fabricated in a CMOS 0.18// process with non-epi substrate. In­

ductor A (LA) is fabricated in a metal layer of nominal thickness of 0.5/tm, and occupies an 
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Figure 2.2 Inductor scaled by a = 204 

Figure 2.3 Inductor scaled by a = 136 

area of 220/zmx220//m while Inductor B (LB)  is fabricated in a metal layer of l f i rn  nominal 

thickness and occupies a similar area. The inductors are characterized using a Agilent E8364A 

50GHz vec tor  ne twork  ana lyzer .  The  GS method  i s  implemented  on  (LA ) -  In  the  case  of  (LA) ,  

two scaled models are implemented for 2oz and 3oz copper clad laminates. For £pcb = 2oz 

and  tpcB =  3oz ,  A = 140  (nomina l ) ,  and  A = 210 (nomina l )  respec t ive ly .  A  photo  of  (LB)  

scaled on 3oz is shown in Figure 2.14. A dielectric layer is placed on the scaled inductor to 

Table 2.2 Measured results at a = 136 

Inductor a = 1 a = 136 

Measured model Scaled back %err 

fres GHz 14.8 GHz 99.9 MHz 13.6 GHz 8.11 

^ll,res .819 .872 .872 6.47 
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freq (500.0MHz to 15.00GHz) 

Figure 2.4 Inductor simulation in ASITIC 

( 3 0 0 . 0 k H z  t o  8 5 . 0 0 M H z )  f  

Figure 2.5 Measured S parameters at a — 204 

simulate the scaled dielectric thickness between the on-chip inductor and substrate. Then, a 

wafer that had a scaled resistivity of the original substrate was placed on top to simulate the 

loss due to substrate coupling. The scaled model is then characterized over a frequency range 

that is 1/a the original desired frequency range through two port S parameter measurements 

[67]. Finally, the frequency range is scaled-up back to the original frequency range. 

2.4.1 Inductor in 0.5// m metal layer 

Note that for all the various figures that are presented, X's are for 2oz and O's are for 

3oz while solid black line presents on-chip inductor data. For (LA). Figure 2.8 shows a Smith 

Chart® plot of Su. Figure 2.8 presents the effective quality factor of (L,\) where it is calcu-
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f r e q  ( 3 0 0 . 0 k H z  t o  1 2 5 , 0 M H z )  

Figure 2.6 Measured S parameters at a = 136 

:"v 

L simulated a = 1 
Lmeasured «=204 
L measured a = 136 - : : 

lated as 

Figure 2.7 Inductance of original and scaled models 

Q"> = Real (Zm)  < 2  3 )  

where is the input impedance seen looking into the inductor,. The effective inductance calcu­

lated as: 

L"> = 2 „/ p'4) 

is shown in Figure 2.10. It should  be  noted that Leff includes the effect of parasitic capacitances 

on the inductor structure. 

Table 2.5 lists characterization results of the scaling on Inductor (LA)-  AS for f r e s ,  the 

percentage error %err was relatively low, < 5%, while %err in |SIIJRES| was < 8%. The %err 

in L was < 22% for 2 GHz < / < 6 GHz for 2oz model, but for the 3oz model, it was < 34% 
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Table 2.3 Measured results at a — 204 

Inductor a — 1 a = 204 

Measured model Scaled back %err 

fres GHz 14.8 GHz 59.90 MHz 12.22 GHz 17.4 

S'il,res .819 .834 .834 1.83 

Table 2.4 Inductance for a = 1,136, and 204 

L (nH) a = 1 a = 136 % err a = 204 % err 

@lGHz 2.22 2.37 6.76 2.17 2.25 

©2GHz 2.23 2.39 7.17 2.18 2.25 
@3GHz 2.26 2.44 7.96 2.23 1.33 
@4GHz 2.29 2.51 9.6 2.32 1.31 

for the same frequency range. As for %err in fQmar, and Qmax it was < 5% , and < 18% 

respectively for the 2oz model. This is a better result than the 3oz model which has 25% and 

43.1% for fQmax, and Qmax respectively. 

Note that L, and Qmax gave a pessimistic prediction for the on-chip inductor parameters. 

These scaled model can be considered as a lower bound compared to the original on-chip model. 

freq (1Hz to 18GHz) step 1GHz 

Figure 2.8 Su  for inductor (LA)  
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ox, 
3-

2-oo 
1 — 

8 10 12 14 0 2 4 6 

freq, GHz 

Figure 2.9 Q factor of on-chip and scaled inductor (La ) 

>.0E-9— 

4.OE-9 

2.OE-9— 

freq, GHz 

Figure 2.10 Lefj of on-chip and scaled inductor (LA)  

2.4.2 Inductor in 1/mi metal layer 

For (LB) ,  Figure 2.11 shows a Smith Chart plot of Su- The effective quality factor is 

p resen ted  in  F igure  2 .12 .  In  add i t ion ,  F igure  2 .13  demons t ra tes  L e f f .  

Table 2.6 lists characterization results of the scaling on Inductor (LB)-  AS for fres, the 

percentage error %err was lower for the 3oz than for 2oz, while %err in |Sii,/res| was < 4.5%. 

The %err in L was lower in the case of 2oz, < 8%, than for 3oz, < 17.3% for 2GHz</<6 GHz. 

Note that fQ , and Qmax give a pessimistic prediction for the On-chip inductor parame­

ters. These scaled models can be considered as a lower bound compared to the original on-chip 

model. 

2.5 Sources of error 

There are several sources of error that contribute to the deviation of the results from the 

actual values. The network analyzer was calibrated using low frequency connectors. This 
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freq (1 Hz to 18GHz) step 1GHz 

Figure 2.11 Sn for inductor (LB)  

7 — 

6— -o.x. 

oo 3-

2 — 
1 -

freq, GHz 

Figure 2.12 Q factor of on-chip and scaled inductor (LB)  

calibration can be improved by using higher frequency connectors. In addition, it is more 

difficult to find wafers that are thick enough to capture the substrate loss effect. A substrate 

with the desired scaled resistivity was not available at the time of the experiment. A substrate 

with a scaled resistivity within a range of the desired resistivity, was used. This resulted in 

different parasitic capacitances that affected the electrical parameters of the inductor such as 

^Qmax ' an<l also generated loss that affected Qmax for the scaled models. Also, the equations 

in Table 2.1 are approximations of the actual behavior of the inductor; the skin effect was 

not taken into consideration when modelling Rs, and a constant resistance was assumed for 

the metal winding for the whole frequency range of operation. This in turn affects Qmax• 
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4.OE-9— 

0.0-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

freq, GHz 

Figure 2.13 L E FF of on-chip and scaled inductor (LB)  

"  !  T f u  

' L 

Figure 2.14 Photo of scaled inductor (LB)  on 3oz 

In addition, the inductance was calculated as in Equation 2.4. This included the parasitic 

capacitances of the structure. This means that the choice of the substrate that simulates the 

loss affects the value of Lef /. The method can use offset cancellation techniques to cancel most 

of the errors in Qm a x  and fQ m a x .  

2.6 Contribution summary 

In this chapter, a method of characterization of RF inductors by geometric scaling is pre­

sented. The geometries of on chip passive RF components are scaled up by a factor a. The 

scaled model is characterized at a scaled down frequency range by a factor 1/a. The scattering 

parameters extracted from two geometrically scaled-up model at the scaled-down frequency 

range showed good agreement with the original on-chip inductors at the original desired fre-
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Table 2.5 Data presenting on-chip and scaled models of in­
duc tor  (LA)  

Inductor (LA)  On-chip 2oz %err 3oz %err 

fres, GHz 12.8 13.2 3.1 12.2 4.69 

1 ^ll,/res 1' GHz 0.852 0.918 7.8 0.915 7.39 
L,nH @2GHz 3.34 2 65 21.1 2.22 33.5 
L,nH @4GHz 3.56 2.79 21.7 2.45 31.2 
,L,nH @6GHz 3.87 3.09 20 2.87 25.7 

/QM.,, GHz 5.04 4.82 4.37 3.78 25 

Qmax 4.38 3.61 17.6 2.49 43.1 

Table 2.6 Data presenting on-chip and scaled models of in­
duc tor  (LB)  

Inductor (LB)  On-chip 2oz %err 3oz %err 

/res, GHz 13.68 11.49 16 12.7 7.2 

1 S'il,/res 1' GHZ 0.877 0.903 2.9 0.916 4.47 
L,nH @2GHz 3.4 3.13 8 2.82 17.3 
L,nH @4GHz 3.55 3.29 7.48 2.97 16.32 
L,nH @6GHz 3.86 3.66 5.0 3.3 14.5 

f Qmax '  GHZ 5.04 3.29 34.7 3.2 36 

Qmax 8.07 5.31 34.2 5.19 35.7 

quency range. Extra parasitic capacitances that do not have any equivalence on-chip, reduced 

the effective inductance. The models gave also a lower bound for Qmax and fQmax• This 

method can be utilized to give a prediction for RF spiral inductors before fabrication. While 

the equations given in Table 2.1 are primarily for lumped circuit elements, the same scale 

factor applies to distributed circuits, and work with distributed circuits will continue. 
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CHAPTER 3. Design and characterization of RF transformers with 

improved bandwidth 

3.1 Introduction 

Transformers (TR) are vital elements in this project. They have several responsibilities. 

They act as an interface between the transmitter chip and the PCB interconnections. In ad­

dition, they act as a protection device for the chip. Since digital data is transmitted through 

the TR to the PCB microstrip line (MSL), the transformer needs to be capable of passing a 

wider range of frequency contents of the signal compared to typical RF TR's which pass a 

narrow band of frequencies and need to have a high selectivity factor. There are several mono­

lithic planar transformer structures such as planar interleaved 4 port transformers, bandwidth 

improved RF transformers, and other structures that are discussed in this chapter. 

3.1.1 Organization of this chapter 

Analysis of ideal 2 port and 4 port transformers is presented in the next section. Then a 

description of the resonance frequencies of the transformer follows. Afterwards, an analysis of 

changing the metal layer for the transformer and its effect on the transformer electrical param­

eters, is given. Next, the objective of research is presented. Several transformer structures are 

discussed such as planar interleaved, concentric, and ring transformers. Analysis of bandwidth 

improved transformers is presented too. An interface that helps in the design of RF transform­

ers between MATLAB and ASITIC, is introduced. Methods for probe recalibration and pad 

parasitic decoupling capacitances extraction, are explained afterwards. Then characterization 

results are given for planar transformers characterized in a 0.18// CMOS process. 



www.manaraa.com

21 

3.2 Scattering parameter analysis of ideal RF transformers 

In this section, a brief analysis is presented about the behavior of the ideal RF transformer 

in the form of S parameters. Analytical expressions for 2 port and 4 port ideal RF transformers 

are developed with supporting figures. 

3.2.1 Analysis for ideal two port transformers 

m 

I 

•  " V V V  •  

V 1  

t; 
v 

+ 

12 

V 2  

a 
W 

Figure 3.1 Schematic for 2 port ideal transformer 

Table 3.1 Two port ideal transformer parameters 

Parameter Definition 

h Current entering the transformer primary 

h Current entering the transformer secondary 

Vi Voltage across the transformer primary 
y2 Voltage across the transformer secondary 
L Self inductance of the primary or secondary 
M =k-JT? 

OJ =2?r/, / is the frequency 

Figure 3.1 presents a schematic for an ideal transformer where the S parameters are to be 

calculated. The parameters needed for S parameters calculations are listed in Table 3.1. Ta­

ble 3.2 lists the electrical parameters for the ideal two port transformers. Su can be calculated 
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Sii\v2=-i2z2  — 
^ - AZf 
V\ + I\Z\ 

- OW - 2500 
w2M2  -  co2L2  + 2500 + j lOOcoL 

(3.1) 

(3.2) 

k increases along 
arrow direction 

Figure 3.2 S parameters of ideal 2 port Figure 3.3 S parameters of ideal 2 port 
transformer on a polar scale, transformer on a polar scale, 
Su in red, and S'21 in blue Su in red, and S21 in blue, 

k = 0.8 to 1 

For w —> 0, 

SN(W-»0) = 1/180 (3.3) 

which represents a short circuit; total reflection at the primary. While for u> —> 00, 

snw^-x )  =}s l^p- l ^+ l j imul  (3-4) 

= 1Z0 (3.5) 

which represents an open circuit. As for S21, it can be calculated as: 

q I V2 ~ h%2 ZO f i \  
= y, + /,z, (3'6) 

j loou jm 

+ 2500 + JLOOWZ, 
(3.7) 
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For uj  —> 0. 

Sgi(w —> 0) = 0 (3.8) 

therefore no signal is transmitted to the secondary, while for UJ —> oo, 

521 (a; —> oo) = 0 (3.9) 

thus no transmission because of the infinite impedance in the primary. 

S'IL and S'21 are plotted in Figure 3.2 on a polar plot. The Smith Chart can be imposed on 

the polar plot. Su is plotted as a set of red curves that span k from 0 to 1 in steps of 0.1. The 

arrow in 3.2 indicates the direction where k increases in value. S21 is the set plotted in blue 

curves for the same values of k. and Figure 3.4 presents the S parameter curves on a linear 

plot. The independent axis is the frequency. 

For k — 0, there is no coupling between the primary and secondary. The primary by itself 

is an inductor. The secondary also acts as an inductor. Thus Su = 1, and S21 = 0. Because 

of symmetry, S22 — 1, and S12 = 0. 

As k increases, Su starts to decrease at higher frequencies, and then increases again to 

reach Sn(w —» 00) = 1. 

As for S21, it increases to a certain value, less than 1, and then decreases till it reaches 0 

at oc. S21 takes the shape of a circle that is tangential to 0. 

When k = 1, complete coupling is achieved between the primary and the secondary. Su 

starts at 1Z180, and then ends at Sn(w —> 00) = 0. S21 starts at 0 and S'21 (w —> 00 ) —» 1/0. 

In Figure 3.3, as k is swept from 0.8 to 1, it is noted that S21 ends in the center of the 

polar coordinates for k = 0 because the structure becomes an inductor and not a transformer 

anymore. 

For k = 0, there is no coupling between the primary and the secondary. Therefore Su = 1, 

and S21 = 0. When k increases, Su decreases, and S21 increases. For k = 1, Sn(w —> 00) —> 0, 

and S2i(w —> 00) —> 1. 
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Figure 3.4 S parameters of ideal 2 port transformer on a linear scale 

3.2.2 Analysis for ideal four port transformers 

Figure 3.5 shows a 4 port ideal transformer subjected to S parameter calculations for Su. 

The electrical parameters for analysis are listed in Table 3.2. Since this is a 4 port network, 

16 S parameters are needed for calculating the complete S parameter matrix. 

To calculate Su, 

- KS 
where v2  =  — j2z - i •  v:>,  =  —i3z3 ,  and v i  =  —i4z4 .  s21  is calculated as 

where v2 — —i2z2, V3 = —/3Z3, and v4 = -i4z4. s14, is calculated as: 

where v \  =  —i \z \ , v2  =  —i2z2 ,  and V3 = — i3z3 .  Table 3.3 lists the analytical expressions 

for various Sy, i = 1...4, and j = 1...4. Because of symmetry in the ideal structure, 

only 4 parameters need to be calculated and the rest are deduced from them. Referring to 
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Figure 3.5 Schematic for 4 port ideal transformer 

the derivations in section 3.11.2, the differential input to differential output S parameters are 

shown in Table 3.3. 

3.3 Transformer resonance frequencies 

The transformer has three (main) resonance frequencies. 

1. fsp  is the resonance frequency of the primary. This comes from the self-inductance of the 

primary, and the primary to ground capacitance, and primary to primary capacitances. 

2. fss  is the resonance frequency of the secondary. This comes from the self-inductance of 

the secondary, and the secondary to ground capacitance, and secondary to secondary 

capacitances. 

3. fc  is the coupling resonance frequency. This comes from the inter-winding capacitance 

between the primary and the secondary. 

Other coupling modes may exist because of the inductive and capacitive fringe coupling 

sets. As for fsp and fss, a value around 10 GHz is achievable for a planar transformer. The 
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Table 3.2 Four port ideal transformer parameters 

Parameter Definition 

h Current entering the transformer primary (port 1) 

h Current entering the transformer primary (port 2) 

h Current entering the transformer secondary (port 3) 

h Current entering the transformer secondary (port 4) 

Vi Voltage from the transformer primary (port 1) to ground 
V2 Voltage from the transformer primary (port 2) to ground 
V3 Voltage from the transformer secondary (port 3) to ground 
V4 Voltage from the transformer secondary (port 4) to ground 
L Self inductance of the primary or secondary 
M =kVL2. Mutual inductance between the primary and secondary 
UJ —2tt/, / is the frequency in Hz 

problem is with fc  which can be seen when the transformer 4 port S parameters are converted 

to 2 port differential input to differential output S parameters. Since a thick metal layer 

is chosen (Thickness > 1/im) to achieve high Q, the inter-winding capacitance between the 

primary and secondary is higher. Therefore, fc becomes lower. As a result, choosing a thinner 

lower metal layer increases fc although the Q factor is lower because of the increase of the 

series resistance of the primary and secondary windings. 

3.4 Effect of changing metal layer 

In this section, the effect of changing the metal layer of the transformer is discussed. 

Changing the metal layer changes the parasitic capacitances of the transformer to the substrate. 

In effect, the resonance frequencies of the transformer are affected. 

Let the design parameters of the transformer be defined as in Table 3.4. 

Several transformer structures are simulated in ASITIC. The geometric parameters are 

listed in Table 3.5. Table 3.6 presents quantitative results regarding the resonance frequencies, 

and inductance values when the metal layer is changed. 

When the layer is increased from M thin to M thick, several characteristics of the transformer 

are affected accordingly as in Table 3.6. The effects are discussed below: 
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Table 3.3 Four port ideal transformer S parameters 

Parameter Equation 

oj 2 {M 2  -  L 2 )  + jlOOuL 
~oj2{M 2  -  L 2 )  + 1Û 4  + j200wL 
=S22 = S33 = S44 

104 +jMKkvL 
~ UJ2(M2 - L2) + 104 + j200wL 
=Si2 = S34 = S43 

j IOOcjA/ 
=u)2(M2  -  L2)  + 104+j200uL 
—S13 = S24 = S42 

—jlOOuiM 
~ui2(M2 - L2)  + 104  + j200u>L 
=su = s23  =  s32  

uj2(M2  -  L2)  -  104 

~u2(M2  -  L2)  + 104+j200toL 
— sdd22  

j200u>M 
=  u2{M2 - L2) + 104  + j200wL 
—sd D\2  

1. The self-inductance Lp, Ls(nH) is decreased because the thickness of the metal layer is 

increased. 

2. The mutual inductance Mc(nH), which is a function of Lp, and Ls, is decreased for the 

same reason in 1. 

3. The quality factor Q of the self-inductance increases because increasing the thickness of 

the metal layer will decrease the effective resistance of the windings. Therefore the loss 

is reduced. 

4. f s  increases as the layer is increased due to the fact that as the winding is placed farther 

Su 

S21  

Sz i  

S41 

Sddu  

sdd2\  
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Table 3.4 Design parameters of the transformer 

Parameter Definition 

Len = edge of square that encloses transformer 
W = width of interconnect winding 
S — spacing between primary and secondary windings 
N = number of turns in each of the primary and secondary 
Lp = Self inductance of primary 
Ls = Self inductance of secondary 
Mc = Mutual Inductance between the primary and secondary 
Qp = Quality factor of primary alone 
Mtkin = Thickness of thin metal layer = 0.5/im 

Mthin is about 4//in above substrate 
Mthick = Thickness of thick metal layer = 1/vm 

Mthick is raised 1/xm above M thin 

Table 3.5 Transformer geometric parameters 

Number Len W S N Layer 

mthin  260 5 5 3.5 M5 

mthick  260 5 5 3.5 M6 

away from the substrate, the self-capacitance to substrate is decreased. 

5. f c  decreases as the layer is increased because the layer thickness is increased and this, in 

turn, increases the inter-winding capacitance between the primary and the secondary. 

3.5 Objective of research 

The objective of the research in this chapter is to design monolithic RF transformers to be 

part of a high speed data transmission driver, and that have the following properties: 

1. Broad Bandwidth to accommodate frequencies up to 5 GHz. In other words, f s p ,  f s s ,  

and fc need to be higher than the range of frequencies desired for the operation of the 

transformer in high frequency applications. 
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Table 3.6 Increased bandwidth transformer electrical parameters 

Number Lp, Ls Mc Qp, Qs fs  fc fa,est  fc, est. 
(nH)@5GHz @5GHz GHz GHz GHz GHz 

TR5 4.89 3.67 2.23 13.94 4.75 11.77 19 
TR6 4.84 3.65 6.37 15.04 3.35 11.73 13.4 
Layer Inc. -Ij. JJ. ft ft JJ. JJ. 

2. Low loss for a wide band of frequencies of operations. 

3. High mutual inductance between primary and secondary in order to induce detectable 

voltage at the secondary. 

The self and coupling resonance frequencies are generally low for the planar transformer. An 

optimization of the self- resonance frequencies with a high mutual inductance can be achieved 

but the challenge is in the coupling resonance frequency. It needs to be increased so as to allow 

frequency components of the signals to be coupled from the primary to the secondary. 

3.6 Planar interleaved transformer 

In this section, several transformer structures are explored. They are the planar concentric 

transformer, planar interleaved transformer, and others. 

3.6.1 Introduction 

The transformer primary and secondary are interleaved in this structure. The input 

impedance is equal to the output impedance. The coupling coefficient k is high, on the order 

of 0.8, where 

k  =  fr~r (3-1 3)  

where M\2 is the mutual coupling between the primary and secondary, L\ and L2 are the 

primary and secondary self inductances of the transformer, respectively. The coupling capaci­

tance between the primary and secondary can be relatively high. This is because the primary 
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or secondary windings are adjacent to each other on both sides except in the outer layer. For 

example, a primary winding lies between two secondary windings, and vice versa. 

This increased coupling capacitance with the increased mutual inductance M between the 

primary and secondary, results in a reduced coupling resonance frequency. This means that 

the transformer stops acting like a transformer after a certain frequency fc,res-

^ = 2^cMi2 (3 14) 

where c c  is the coupling capacitance between the primary and secondary windings in the same 

layer. Fringing capacitance can be added to the parallel plate capacitance to give a better 

approximation. A photomicrograph of the interleaved transformer in a 0.18/zm CMOS process 

is shown in Figure 3.6. 

Figure 3.6 Chip photomicrograph of planar interleaved windings with no 
shield in thick metal layer 

3.6.2 Bandwidth improvement of planar interleaved transformer 

The coupling resonance frequency f c  is directly related to the mutual side capacitance 

between the primary and the secondary windings. In addition, fc is also related to the mutual 

inductance between the primary and the secondary. Note that the capacitance affects mainly 

two windings: the ones adjacent to each other. On the other hand, the mutual inductance 
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i-HH i~Ei 
Figure 3.7 Coupling capacitance converted to substrate in planar inter­

leaved transformer 

affects more than the winding directly adjacent to the original winding. This shielding feature 

can be utilized to increase fc. One way to do that is to introduce a shield that is placed 

between the primary and the secondary. This shield hides the primary from the secondary 

capacitively but not inductively [49]. As a result, the capacitance from primary to secondary 

is converted to two equal capacitances from primary to shield and from secondary to shield. 

If the shield is grounded to substrate, then the primary-secondary coupling capacitance is 

converted to primary to ground and secondary to ground self-capacitance as shown in Figure 

3.7. It should be noted that the shield becomes more effective in shielding the magnetic field 

when the frequency increases due to the reduction in the skin depth. Therefore at higher 

frequencies, the mutual inductance might be affected. 

As a result, the coupling bandwidth of the planar Interleaved transformer can be improved 

by adding, in the same metal layer, a thin metal shield between the primary and the secondary. 

The shield should be the minimum width that can withstand a via connected to it. This shield 

is connected to ground or substrate.  The shield eliminates most of the coupling capacitance, C c  

between the primary and secondary. Therefore, Cc is decreased to just the fringing capacitance 

between the primary and secondary, while the primary self capacitance, Csp, and secondary 

self capacitance, C s s ,  each is increased by 2C c .  

This has the effect of increasing /c, while fsp, and fss  are decreased. It is important to make 

the shield as thin as possible so that the increase in Csp, and Css is minimal and the reduction 

in fsp fss is minimal too. The shield should not be continuous between the primary and 

the secondary, and should be segmented into short segments in order to prevent any induced 

currents in it. 
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Consequently, when converting the coupling capacitance to a self-capacitance at the pri­

mary and secondary, the self-resonance frequency is affected. The following example estimates 

the decrease in f s p  and f s s .  

Example: let the spacing between primary and secondary be 5, and S = H where H is 

the distance between the winding and the substrate. The capacitance of the winding to the 

substrate is around Csp/m = eW/H. Then, fsp = \/2~ LC'sp. If a shield is introduced 

between the primary and the secondary then the capacitance from primary to shield, and from 

secondary to shield is Cc/m = 2et/S for each winding where t is the thickness of the metal 

layer. Since the winding has coupling capacitance to ground on both sides, the total coupling 

capacitance, Cctot/m = Aet/S. Assuming t = 0.1 II7, where W is the winding width, then 

Cctot/m = OAeW/H. As a result, the new resonance frequency can be written as: 

1 

277^2 (Cp + Qpw) 
1 

" 2lTy/L(1.4Cp)  
_ 0.845 

" 27ty / l (c j  

In general, it can be shown that f sp,est = /P/\A + At/W. Therefore, as t  decreases, and 

W increases, this equation gives an approximation of the new resonance frequency due to 

the shield effect. Please see Table 3.6 for the modified self-resonance frequencies. As for 

/c, it increases considerably because the coupling capacitance is reduced to a fringing factor 

that might be a small fraction of the original capacitance (approximately 1/4 of the original 

capacitance. Therefore, /Ciest can be several times the original /c; around 4 times. 

3.6.3 Layout consideration of the transformer 

The proposed layout for the transformer can be seen in Figure 3.8. The shield consists of 

a series of metal strips that are placed between the primary and secondary windings. Each 

shield segment is connected through a set of vias to the substrate. The substrate is grounded 

by connecting the pads to substrate and by having down-bonding pads to the back of the chip. 
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Figure 3.8 Layout of the transformer Figure 3.9 Layout of the transformer wind-
windings with long shields in ings with short shields in 
Cadence® Cadence® 

Two variations of shields were implemented. Figure 3.8 shows small shield segments and 

Figure 3.9 shows long shield segments connected at only one point for each edge of the windings. 

A better way to place the shield as a "wall" between the primary and secondary. The wall 

starts from the substrate, and extends above the layer where the transformer exists. The shield 

eliminates the fringe capacitance between the primary and secondary. However, there exist 

some processing challenges making such "wall". Metal spikes may develop into the substrate 

if the vias are too large or wide. 

The shield between the primary and secondary of the transformer may serve as shield for 

a surge in voltage that is imposed on the primary of the transformer. This structure can be 

considered as a secondary protection measure against an BSD event. 



www.manaraa.com

34 

Figure 3.10 Chip photomicrograph of the 
transformer with long shields 

Figure 3.11 Chip photomicrograph of the 
transformer with long shields 
(zoom, in) 

3.7 Planar concentric transformers 

The transformer structures are laid out as the whole primary winding in the center and 

the whole secondary winding around it. the primary can be interchanged with the secondary. 

The structure is obviously not symmetric, and the the coupling coefficient is lower than the 

case for the Interleaved Transformer because the windings are farther away from each other. 

This means that a considerable amount of the signal won't be transmitted from the primary 

to the secondary. The self capacitances csp, and css can be close to each other by optimizing 

the area each winding occupies. 

3.7.1 Bandwidth improvement of planar concentric transformers 

The structure inherently has a lower Cq, than the interleaved case because the coupling 

capacitance is seen between only the outer edge of the last winding of the inner windings and 

the inner edge of the first winding of the outer winding. Therefore fc,res of this winding can 

be higher than in the Interleaved case. The fc,res can be maximized by using a shield between 

the primary and secondary winding as in the first case. 
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3.8 Planar ring transformers 

Other transformer structures were studied beside the aforementioned fabricated designs 

above. In the beginning, an inductor structure is designed. Then, the inductor structure 

can be expanded to be a transformer. One inductor design for a transformer is to make the 

transformer in the form of two rings. The flux lines are perpendicular to the rings. The winding 

is made such that the current lows in one of the rings clockwise. In the other ring, the current 

flows in the counter clockwise direction. If the flux leaves one of the rings then it enters the 

other ring. The ring area of one of the rings is made equal to the area of the other. The flux 

flows from one of the rings to the other. A sample inductor with one winding per ring is shown 

in Figure 3.12. The inner ring is marked by the blue color, while the outer ring is marked by 

the brass color. Please note that the blue and brass color rings are virtual and not physical 

geometries. 

Figure 3.12 Two ring transformer layout 

Previous work on this design is in [21] where the flux flows from one winding of the inductor 

to another. The flow of flux from one inductor to the other is just in one direction. However, 
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in the case of the ring inductor, the outside ring encircles the inner ring from all directions 

as in Figure 3.12. As in [21], horizontal guides for the flux can be added in the form of rings 

between the aforementioned rings. These guide rings should be located on top of the inductor 

plane and underneath the inductor plane. The number of rings on top and bottom can be 

reduced by having the rings farther away from the inductor layer. As a result, the inter-layer 

dielectric thickness can be high. 

The extension of this inductor design to a transformer design can be done by adding winding 

rings inside the planar inductor which becomes now, say, the primary. The new rings become 

the secondary. 

3.9 Design of planar transformers using ASITIC and MATLAB interface 

Figure 3.13 Chip photomicrograph of the Figure 3.14 Chip photomicrograph of the 
transformer with short shields transformer with short shields 

(zoom in) 

A MATLAB interface was developed for designing transformers in ASITIC. For complex 

transformer structures, it is difficult to generate ASITIC input files by hand. In addition, if a 

sweep of a parameter, or an optimization of a parameter is desired, this interface is helpful in 

performing these tasks. 

The interface makes it easier to automatically generate ASITIC input files. ASITIC uses 

these input files to generate the transformer geometric model and performs simulations on it 
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to get electrical parameters such as resonance frequencies, quality factor, parasitic resistances 

and capacitances, and scattering parameters. The software interface receives the simulation 

results from ASITIC and analyzes the data for all the simulation runs. The results can be 

plotted in MATLAB. This interface contributes to the design of RF transformers within the 

design constraints. 

Several versions of the interface are developed. They are customized for the type of pa­

rameter sweep required. The interface code is listed in Appendix A. 

3.10 Transformer structures fabrication in a 0.18/im CMOS process 

Several transformer structures were fabricated in a 0.18/z CMOS process. The structures 

include 3 port and 4 port transformers. The 4 port structures include a regular planar inter­

leaved transformer, bandwidth improved transformer with short shields, and with long shields. 

For each port of the transformer, there exist three pads compatible with the Ground-Signal-

Ground microwave probe tips used later in testing. The signal pad connects the RF element 

port to the middle probe tip. The two remaining ground pads connect the two edge probe tips 

to the ground substrate. Pads connect the substrate to the signal pad and are located at four 

corners of the structure. In this way, the substrate can be connected to the shield layer, or the 

substrate can be connected separately. Additional substrate pads are located at the corners 

of the chip. These pads are connected to the paddle under the chip. This allows for substrate 

grounding while testing. 

The transformer element core area is 260/imx260/xm. As for the pads, for each port there 

needs to be a set of three pads aligned together. The pads are 75/umx75/zm each with spacing 

between pads inner edges of 25/zm. These dimensions are compatible with the test probe tips. 

Note that the sets of pads form a square like shape on the periphery of the transformer. It was 

also taken into consideration that the pads are placed in way that would let the four microwave 

probe tips be placed on the transformer structure simultaneously. 
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3.11 Four port RF transformer test procedure 

The S parameters of the 4-port transformers were extracted using an HP 50 GHz Network 

Analyzer. One issue in measurement is in calibrating the 4 probe tips simultaneously. Two of 

the probe tips are connected to the network analyzer and are calibrated. The other 2 probe 

tips are terminated in 50f2. The measurement assumes that the probe tips are calibrated to 

50f2. In reality, these probe tips use are terminated without calibration to 50f2. 

The other difficulty in measurement is the parasitic effect of the pads that is present in the 

S parameters. Therefore the pad parasitic effect needs to be reversed in the S parameter set. 

This can be performed by the pad de-embedding method. 

Recalibration is performed by converting S parameters to T parameters and then perform­

ing probe recalibration as in Section 3.11.1 [67]. Parasitic pad de-embedding is performed by 

converting the S parameters to Y parameters and then de-embedding the pad parasitics as in 

Section 3.11.2. 

3.11.1 S parameters probe recalibration using a T transformation 

The test procedure uses 4 microwave test probes and tips. Six S parameters readings are 

taken. They are: 

1- From Port 1 to port 2 while Ports 3 and 4 are terminated with 50f2. 

2- From Port 1 to port 3 while Ports 2 and 4 are terminated with 50S7. 

3- From Port 1 to port 4 while Ports 2 and 3 are terminated with 50f2. 

4- From Port 2 to port 3 while Ports 1 and 4 are terminated with 50f2. 

5- From Port 2 to port 4 while Ports 1 and 3 are terminated with 50(1. 

6- From Port 3 to port 4 while Ports 1 and 2 are terminated with 5017. 

Ports 1, and 2 are calibrated by the network analyzer. Re-calibration for ports 3 and 4 

is made because these ports are replaced during measurements. They are measured for open, 

short and through connections. The third probe recalibration S parameters matrices, are: 

^ (3.15) 
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aPortS 
^22 

aPort3 
l521 

cPortS 
"-'21 

cypPort3 / qPort3 j_ ~pPort3\ 
_ ZL short V°LL 1 open J 
~ -rPortS _ rPort'i 

short open 

= YI - AS 

_ qPortS 
— ^12 

where As = ;S22 — S21S12, while the forth probe re-calibration parameters are: 

cPort4 -nPortA 
D11 — L short 

ePortA 
"22 — 

n-pPort4 ! qPort4 , yPortA \ 
short lJll 1 open ) 

T^PortA _ -pPort4 
short open 

o Port4 c 
"21 — D 

Parti 
12 

S11 S12 Sl3 S14 
aPortl,2 
bll 

QPortl,2 
"12 

qPort 1,3 
"12 S, 

S21 S22 S23 S24 
aPortl,2 
°21 

qP ort 1,2 
"22 

ePort2,3 °12 5 

S31 S32 S33 S34 
qP ort 1,3 "2l nPort2.3 

21 
ç ,Portl,3 22 s 

S41 S42 S43 

5] nPortl.4 21 cPort4,2 
"21 

QPort4.3 
21 S, 

The 4 Port S parameter matrix of the coupled transformer, can be written as: 

-rPort 1,4 
12 

Port4,2 
12 

Port4,3 
12 

Port 1,4 
22 

Defining the T-parameters matrix as: 

T i l  T i2  

Î21 Ï22 

The S-parameters matrix is transformed to T-parameters matrix using: 

rp ^S 
T" 
rp S'il 112 = 7T-

•321 
rp S22 

21 = Ô-
*->21 

t22 = TT-
•->21 

For each of the six measurements, there is a specific S to T transformation matrix to 

for port 3 and port 4. 

uncal 

Portl,2 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

• recal -

T 
= r 

- Portl,2 . 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

recalibrate 

(3.29) 
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• recal -

T 
Peril,3 

T 

• recal • 

T 
Portl,i 

T 

- recal -

T 
Port2,3 

T 

- recal • 

T 
Porti,2 

T 

- recal • 

T 
Porti, 3 

T 

uncal 

Port 1,3 

uncal 

T 

-l 

pottz 
-1 

T 
Port 1,4 L J Porti 

uncal r *i — 1 
T 

Port2.3 L J PortS 

— 1 r i uncal 

T 
Porti 

-1 

Porti 

J Porti,2 

uncal 

Porti,3 

-1 

PortS 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

For each re-calibrated T transformation, the T to S transformation is performed again where 

'il S12 

and 

Su 

Sl2 

%i 

S22 

S21 S22 

111 
T22 
At 
T22 
1 

% 

~wi 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

3.11.2 S parameters pad parasitic decoupling using a Y transformation 

In this subsection, the objective is to obtain the de-embedded S parameters of the trans­

former. The S-parameters matrix is transformed to ^-parameters matrix using: 

\rdec 
r l l  

(1 — S'il) (1 + S22) + S12S21 \rdec 
r l l  ( 1  +  S u )  ( 1  +  S 2 2 )  — S12S21 

\rdec 
r12 

— S\2 \rdec 
r12 (1 + Su) (1 + S22) - S12S21 

t/- dec 
21 

—S21 t/- dec 
21 (1 +  S u )  (1 + S22) — S12S21 

\rdec 
*22 

(1 + Su) (1 — S22) + S12S21 \rdec 
*22 (1 + Su) (1 + S22) — S12S21 

Yo (3.40) 

Y0 (3.41) 

Y0 (3.42) 

Y0 (3.43) 

where Y0 — 1/50. The de-embedded Y parameters are converted back to S parameters through: 

S-dec _ (Yp — Fn) (Y0 + F22) + ̂ 12^21 
^  "% +  ̂ l ) ( ^  +  }22 ) -y i2^1  

(3.44) 
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qdec 2^12^0 fo 4c) 

^  %+yn) (^+w-y i2^ i  ^ 

Snfc = — _  , ~ 2 y 2 1 5 ° , — ( 3 . 4 6 )  

gdec =  (Yo +  ̂ l l )  0<o ~ *22 ) + *12*21 ^ 47j 

% + yn)% +1^2)-*12^1 
(y0 + y11)(y0-y22) + yi2y2i 

% + yn)(^ + %)-*12*^1 

The 4 port S-parameter matrices are transformed to 2 port differential input to differential 

output S parameters by using the relations: 

^ = (Su - Si3 - + %) /2 (3.48) 

^ = (^12 - %2 - Si4 + 3w) /2 (3.49) 

= (%i - S41 - %3 + S43) /2 (3.50) 

^ /g (3.51) 

The common mode to differential mode S parameters are calculated using: 

= (S11 + S13 + + %s) /2 (3.52) 

^ = (^12 + %2 + S14 + Sw) /2 (3.53) 

gCD = ^ /g (3.54) 

ggc = (%2 + %2 + %4 + S44) /2 (3.55) 

These parameters describe the behavior of the transformer as a function of frequency. From this 

data a broadband model of the transformer can be generated using an optimization method. 

The S parameter set can be directly used as a four port device in Spectre®. 

3.11.3 Common Mode Rejection Ratio calculations 

The Common Mode Rejection Ratio (CMRR) is an indication of how the common mode 

at the primary of the transformer is rejected at the secondary. There are several definitions 

for the CMRR. They depend on the number input ports and output ports. One definition 

is about a single input to differential output. The definition described here is for a network 

with 2 input ports and 2 output ports. In [55], [19], [45] and [24], the CMRR is the ratio 
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of the differential input to differential output gain Gdd, to the common mode input gain to 

differential output gain Gcd• Therefore, the expression used in analysis here is: 

odd 
CMA# = ̂  (3.56) 

"21 

3.12 Transformer characterization results in a 0.18// CMOS process 

frea=6.010GHz 
phase(SD12 dec M5)=02 

m3 
freq=5 910GHz 
phase(SD12_dec_M5l)a-0 5 

m2 
frep=5 710GHz 
pha5c(SQ12_dec_M5s)=-0.0: 

i: 
i n 1  

freq (10 00MHz to 25.00GHz) freq (1000MHz lo 25.00GHz) 

Differential mode to Differential mode 

Figure 3.15 Sdd of the transformer in thin metal layer 

Characterization results for the planar interleaved transformers are discussed in this section. 

The chip substrate is non-epitaxial with high resistivity on the order of several tens of Q cm. 

Simulation results for the transformers are presented. 

Figure 3.15 presents Sdd of the transformers (no shields, with short shields, and with long 

shields). The top linear graphs on the left side present Sdd\2 with phase in degrees. fc was 

shown to be as in Figure 3.15 for no shields, short shields and long shields to be 6.01GHz, 
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M5 

S12 Common mode to Differential mode S11 

Figure 3.16 Scd of the transformer in thin metal layer 

5.71GHz, and 5.9GHz respectively. The resonance frequencies are comparable to each other. 

There was no significant increase in fc when the shield is introduced. 

The substrate used is high impedance. The shields need to be grounded to the ground pads 

not through the substrate but through direct metal contact to the ground pads. The metal 

contact between the shield elements and the ground pad is not present in this fabrication run. 

The top linear graphs on the right side of Figure 3.15 represent the magnitude and phase 

of Su which increases with frequency. 

The Smith Chart on the left of Figure 3.15 represents S21 which starts at So 1 (uj = 0) = 0. 

The structure follows a similar path to S21 in Figure 3.2. Because of the parasitic capacitances 

and resistances, and the nature of the structure, k < 1. 

The Smith Chart on the right represents Sn. Because of the series resistance of the 

windings, Sn starts around 0.36 instead of 0. The Sn curves deviate from the ideal case in 
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Figure 3.17 CMRR of the transformer in thin metal layer 

Figure 3.2 because of the parasitics at high frequencies. 

Figure 3.16 presents Scd of the transformer. The graphs on the left show Scn\2-  Up 

to fc = 6GHz, Scd\2 < -45dB. The graphs on right show Scdu- Scdu < -35dB up to 

fc = 6GHz. The CMRR is plotted in Figure 3.17. CMRR > 45dB up to 6GHz. 

3.13 Contribution summary 

The contribution of this chapter is the analysis, design, fabrication and characterization 

of monolithic RF transformers in a 0.18/zm CMOS process. Analysis is provided for 4 port 

ideal transformers. Several transformer structures ar discussed such as planar interleaved 

transformers and proposed layout changes that have the potential in increasing the transformer 

coupling bandwidth. A ring transformer structure is introduced that allows less eddy current 

loss being introduced into the substrate. A software interface is developed in MATLAB, 

for helping in designing transformer in ASITIC. Recalibration and decoupling methods are 
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presented too. Characterization results of the RF transformers agree with the design objective 

presented in this chapter. The resonance frequencies 6 GHz of the transformer are higher than 

the bandwidth required 5 GHz. 
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CHAPTER 4. Bandwidth improvement of toroidal transformers 

4.1 Introduction 

Transformers (TR) are vital elements in this project. They have several responsibilities. 

They act as an interface between the transmitter chip and the PCB interconnections. Also, they 

act as a protection device for the chip. Since digital data is transmitted through the TR to the 

PCB MSL, the transformer needs to be capable of passing a wider range of frequency contents 

of the signal as opposed to typical microwave TR's which pass a narrow band of frequencies and 

need to have a high quality factor. There are several monolithic planar transformer structures 

that exist. A specific type of transformers called toroidal solenoids is discussed in this chapter. 

The simulation software used in this project is mainly ASITIC. MATLAB custom programs 

were also written to calculate the resonance frequencies of the transformer. 

4.2 Simulation and design using ASITIC 

ASITIC [44] is a free simulation tool for RF transformers and inductors. It offers high 

frequency simulation capabilities. In the author's opinion, it is more user-friendly than Fas-

tHenry [32] and it was developed to handle planar structures in a silicon process. In addition, 

it can produce a layout structure compatible with silicon layout CAD tools. 

In this project, a MATLAB interface was developed in order to sweep the design param­

eter space for the transformer in order to choose the best performance parameters in terms 

of resonance frequency, scattering parameters, quality factor, and minimum area size. This 

MATLAB interface can be easily modified to include an optimization algorithm to find an 

optimized design. 
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4.3 Description of toroidal solenoid transformers 

Toroidal solenoid transformers are usually built off chip on a ferrite core. Some applications 

are found in the power electronics field as in [42], and [22]. The magnetic flux flows in the core 

in a loop. Therefore the flux is contained in that volume. The toroidal solenoid implementation 

faces several challenges on chip. 

There are several publications in the literature about RF toroidal solenoidal inductors and 

transformers. In [68], the inductor is micro-machined to generate the solenoid. In [35], an air 

gap is made underneath the inductor to reduce the parasitic capacitance to the substrate. In 

both designs, the via is large since it does not follow the standard small via size rule. This 

procedure reduces the series resistance of the toroid and thus improves the quality factor. The 

inductor toroid can be wound on a cube as in [70]. The height of the cube is 500/im. The 

toroid cube is mount on the substrate and can be connected to circuit elements on chip. In 

another implementation, a magnetic core can be fabricated to be inside the the core of the 

inductor as in [39]. The inductor operating range is within several MHz. A similar approach 

where a magnetic core is fabricated inside the coil is cited in [1] with a frequency range in KHz 

range. In [37], a solenoid is made by using a thick dielectric layer of 12/^m between the top 

and bottom layers. In [71], the solenoid is made in a thick film process. 

Figure 4.1 3D view of toroidal transformer 
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A 3D view of one implementation of the toroidal transformer is shown in Figure 4.1, where 

the lower layer is always different from the top layer. This means that if the top layer is the 

primary, then the bottom layer is the secondary. A top view is shown in Figure 4.2. The 

complete via connection between layers is not illustrated. 

Figure 4.2 Top view of toroidal transformer 

4.4 Merits of toroidal solenoidal transformers 

There are several merits in toroidal transformer design for high frequency circuits. In the 

planar spiral transformer structure, the magnetic flux generated by the primary windings is 

perpendicular to the plane of the transformer and penetrates the chip substrate. The penetrat­

ing flux can generate eddy currents in the substrate. Sensitive circuits close to the transformer 

can be affected by the transformer flux and this can increase the noise floor in the victim circuit 

and can complicate the design. 

The toroidal solenoid on the other hand, has the flux flowing inside the transformer loops 

and circulating in a loop that takes a ring shape. The flux is contained inside the toroidal 

solenoid. Only flux leakage penetrates into the substrate and thus noise affects other sensitive 

circuits from the toroidal transformer is much less than the case of a spiral interleaved trans­

former. Therefore, it can be a very good candidate for very high frequency applications where 
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noise is an issue. 

4.5 Geometrical model of the toroidal solenoid 

The toroidal solenoid was built using MATLAB. MATLAB generates the ASITIC input 

file. This file was used to generate the toroidal solenoid layout. The layout is displayed in 

ASITIC as shown in Figure 4.3 and then saved in GIF format. This can be imported into 

Cadence's layout tool to prepare for fabrication. The script file is listed in Appendix B.l 

RAD..SM-- 80,RAD._G :62,W 4.5 ,1V-., 

INTERLEAVED 

TOROIDAL SOLENOID 

,  TRANSFORMER 

METAL 1 to 6 

Figure 4.3 Toroidal solenoid transformer generated in MATLAB and 
ASITIC 

An interleaved winding approach is cited to have better coupling between primary and 

secondary [50]. The winding method is chosen to be the interleaving of primary and secondary 

windings together around a dielectric core. 
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4.6 Electrical model of a toroidal transformer 

In order to achieve higher inductance, the cross-section of the toroid should have a con­

siderable height. The standard CMOS 0.18/z process has an oxide thickness of less than 5//m 

between the lowest metal layer and the highest one. In order to achieve a larger loop area 

for the winding, more windings should be made in the toroid. Unfortunately, this leads to 

an increase in the self capacitance to ground of the primary and secondary. The problem of 

oxide thickness can be approached by increasing the oxide thickness in a custom process. In 

this way, a lower number of windings is needed to form the toroidal solenoid coil, and the self 

capacitance of the primary and secondary is decreased. 

The second problem is the coupling capacitance between the primary and the secondary. 

Two factors contribute to the coupling capacitance. The first factor comes from the interwind-

ing capacitance between the primary and the secondary winding segments in the same metal 

layer. This is called side capacitance. The other coupling factor comes from the interwinding 

capacitance between the primary and secondary overlapping vertically when one conductor 

segment is at the higher metal layer and the other is in the lower metal layer capacitance. This 

is called top-bottom layer. The contribution of this factor to the total coupling capacitance 

can be high. 

There are several variations of monolithic toroidal solenoid structures. In this section, a 

quantitative analysis of a specific monolithic toroidal transformer structure is provided. The 

toroidal structure assumes an overall circular shape. A top view of the toroidal transformer is 

shown in Figure 4.3. The primary winding terminals are shown at the lower left corner. The 

secondary windings terminals are at the upper right corner. 

4.6.1 Definitions 

The geometric parameters related to the toroidal structure are defined in Table 4.1: 

It can be shown that 

2ttt'm — (A^p + Ng) 0pm +{Np + Ars)0sp (4.1) 
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Table 4.1 Definitions for a toroidal solenoid geometrical model 

Parameter Description 

ra inner radius 

n outer radius 
r™ = (^) middle radius £ II Perimeter of the middle ring 
W Width of winding 
A cross section area of toroid loop 
Np number of turns in primary windings 
Ns  number of turns in secondary windings 
A8p primary winding segment arc angle 
A8, secondary winding segment arc angle 
AQsp spacing segment arc angle 
0pa — A@pT"a primary inner radius arc 
0pb — A0y, l'h primary outer radius arc 
0sa = A0sra secondary inner radius arc 
(Z)sb = A <dsrb secondary outer radius arc 
0pm = A0prm middle radius winding segment arc 
0sp = A0SpTm middle radius winding spacing arc 

hMtop thickness of top metal layer 

h M bot thickness of bottom metal layer 

hdiel thickness of dielectric layer between Mtop and Mbot 

h sub thickness of dielectric layer between Mbot and substrate 

since 

7T = N (AQsp + A0sp) 

taking into consideration that Np — Ns. 

4.6.2 Mutual inductance calculations 

For a toroidal solenoid, the mutual inductance can be expressed as: 

„ r Ns<f>2 /i0ANpNs 

I 

where the parameters are as indicated by Table 4.3 
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Table 4.2 Definitions for electrical parameters of a toroidal solenoid transformer 

Parameter Description 

j-p 

Mo 

y  sb 
r*Ps 
^ sv 
r<PS 

° f6  
r<Ps 

tbv 

cr 
zips 
^tot 

cr 
Z-tPP 

tot 

nPP 
psub 

current in primary windings 
magnetic permeability 
Magnetic flux in secondary 
dielectric constant 
Side top layer winding coupling capacitances 
Side bottom layer winding coupling capacitances 
Side vias parasitic capacitances 
Top-bottom winding capacitances 
Top-bottom vias parasitic capacitance 
Diagonal primary to secondary parasitic capacitance 
Total primary to secondary coupling capacitances 

Top-bottom winding capacitances 
Diagonal primary to secondary parasitic capacitance 
Total primary to secondary coupling capacitances 

Total primary to secondary coupling capacitances 

4.6.3 Primary to secondary capacitances 

The windings have several primary to secondary parasitic capacitance types. They can be 

classified into top-bottom, side capacitances and diagonal capacitances. 

4.6.3.1 Top-Bottom parasitic capacitances 

The top winding can span over more than the parts of several bottom layer windings. The 

top-bottom capacitance, C-TB• is the vertical overlap capacitance of the top layer winding to 

the lower layer winding and can be expressed as: 

rn 

Jrn,w 

e||rxZ (A0sp + A0P) - raZQ\\ W 
(4.4) 

>ra,prir\sec h-diel 

where pri l~l sec means that the integration is valid only when the primary winding is on 

top of the secondary winding. is the 2-norm or the distance function. 
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4.6.3.2 Side capacitances 

The side capacitance is 

rr 

/ 
J ra  

•nAQsp e\\rxZ (A0sp + A0P) - raZ0||2/iMtoP 
ds (4.5) 

J ra AQ s p  
S 

for the top layer, and 

f •nAQsp e\\rxZ (A0sp + A0P) - raZ.Q\\2hMbot 
(4.6) 

for the lower layer. 

4.6.3.3 Vias capacitances 

The vias have sideways capacitance from primary set of vias to a secondary set of vias, at 

the inner radius, and can be expressed as: 

where n is the number of layers where vias are introduced in the toroidal solenoid. h t  is the 

thickness of the metal layer where the vias are introduced. Note that this capacitance exists 

at the inner winding and outer radius of the toroid. 

As for the number of vias that are needed, they can be determined from the current density 

per via. 

where Imax is the total current passing through the vias. Ivl„ is the current per via. 

4.6.3.4 Total primary to secondary capacitances 

The total parasitic coupling capacitances between the primary and secondary can be written 

as 

,PS = hi 
3% AÛ -y» A (4.7) 

max 

via 
(4.8) 

(4.9) 
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4.6.4 Primary to primary coupling capacitances 

4.6.4.1 Top-Bottom parasitic capacitances 

The top winding can span over more than the parts of several bottom layer windings. The 

top-bottom capacitance, Ctb, is the vertical overlap capacitance of the top layer winding to the 

lower layer winding and can be expressed as: 

cw = fn e||r6Z (AOsp + AQp) - raZ0\\W (4  1Q) 

J ra ,prir\sec hdiel 

where pri n sec means that the integration is valid only when the primary winding is on 

top of the secondary winding. || • ||2 is the 2-norm or the distance function. 

4.6.4.2 Diagonal capacitances 

The diagonal coupling capacitance of vias from primary to secondary can be written as 

/•s=20sb+rbAesp eW\/w2 + h\It  

c„ = / V (4.11) 
JS~° \ls2+hd ' ' 

4.6.4.3 Via capacitances 

The capacitance from a top metal layer where the vias are located to a bottom layer can 

be calculated as: 

C = Pf (4-12) 
l^i= 1 "i 

This capacitance can be in series when several layers are considered for vias. This is a 

very small parasitic capacitance that might affect the behavior of the circuit for very high 

frequencies. The significance of this capacitance increases if the via matrix area is increased. 

4.6.4.4 Total primary to primary capacitances 

[c+cr+d (4.13) 
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4.6.5 Primary to substrate coupling capacitance 

This is the sum of the capacitances to ground for the windings in the bottom layer and in 

the vertical connection. 

This capacitance includes the area under the vias at both ends of the winding bottom layer. 

4.6.6 Optimization of toroidal transformer electrical parameters 

The transformer geometrical parameters can be optimized to meet several geometrical and 

electrical constraints. Geometrical constraints are the area of the toroid and the thickness of 

the dielectric material between the top and bottom metal layer. The electrical constraints can 

be the Q factor, the resonance frequency of the primary, secondary. In addition, the coupling 

resonance frequency between primary and secondary. The self or mutual inductance and/or 

fitting the transformer response to an S-parameter curve, can be another set of constraints. 

The toroidal solenoid laid out in Figure 4.3, was fabricated in 0.18/U CMOS process. A 

chip photomicrograph of the structure is shown in Figure 4.4, and for the whole chip in Figure 

4.5. Figure 4.6 presents characterization results for the transformer using an Agilent E8364A 

PNA Series Network Analyzer. The results presented are preliminary results for the 2 port 

scattering parameters measured between the primary and the secondary. The other ports are 

terminated to 50f2. 

The resonance frequency, fres  is 6.54 GHz for this measurement from portl to port3. The 

corresponding scattering parameter at resonance is S13 = 0.305. After de-embedding probe 

pad parasitic capacitances, fres = 8.25 GHz with S13 = 0.358. 

To reduce the substrate loss, a polysilicon shield is placed underneath the transformer. A 

chip micrograph of the structure is shown in Figure 4.7. This structure is chosen because it can 

e||rbZ (A0sp + A9P) - raZ0\\2W e Hn,/ (Ae,„ + A8„) - r„zo|| 

4.7 Characterization results in 0.18/zm CMOS process 
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impede eddy current generation in the layer because of the structure nature itself. The shield 

bars are always perpendicular to the transformer windings to minimize the induced current in 

the shield. The polysilicon layer is chosen because of its higher resistivity. 

Figure 4.8 presents characterization results for the transformer, with shield, using an Agi­

lent E8364A PNA Series Network Analyzer. The results presented are for the 2 port scattering 

parameters measured between the primary and the secondary. The other ports are terminated 

to 50fL 

The resonance frequency, fres  is 5.35 GHz for this measurement from portl to port3. The 

corresponding scattering parameter at resonance is S13 = 0.259. After decoupling probe pad 

parasitic capacitances, fres = 6.69 GHz with .S'i.s = 0.339. S13 is decreased due to the shield. 

Further optimization is needed for a improvement in S13. 

Table 4.3 Characterization results of a toroidal solenoidal transformer 

No-shield Shield 

M 0.305 0.259 
fres GHz 6.54 5.35 

No-shield (Deembed) Shield (Deembed) 

|Sl3| 0.358 0.339 
/res GHz 8.25 6.69 

4.8 Challenges in toroidal solenoid transformer design 

There are several challenges in the design of toroidal transformers. Most of these challenges 

have to be overcome for the toroidal solenoids to be usable for the high frequency circuit 

design.They are discussed here. 

1. The thickness of the dielectric layer between the bottom layer and the top layer hdiei is 

small. It is usually less than 3 — 5/xm. The small h,iud makes the loop area small. This 

leads to low inductance generated in the loop. Increasing the dielectric thickness requires 

the use of a custom process for the toroidal fabrication. 
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Figure 4.4 Chip micrograph of toroidal solenoid transformer (with no 
shield underneath) in 0.18/zm CMOS process 

2. The side parasitic capacitances between the primary and secondary is significant and can 

reduce the coupling resonance frequency 

3. The top to bottom capacitance can be between the primary windings and the primary 

windings affecting the self resonance frequency of the primary or the secondary. This 

can also be seen at the secondary. 

4. The top to bottom capacitance can be between the primary windings and the secondary 

windings degrading the coupling resonance frequency. 

5. The long toroidal windings have a high series resistances especially at higher frequencies 

due to the skin effect. 

These challenges can be mostly overcome by changing the structure of the transformer as 

shown in next section. 
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Figure 4.5 Chip micrograph of the whole chip (3mm x 3mm) in 0.18/xm 
CMOS process 

4.9 Bandwidth improvement of toroidal solenoid transformers 

The bandwidth of the coupling between the primary and secondary windings can be in­

creased by decreasing the interwinding capacitance while not sacrificing the mutual inductance. 

The solution to this problem can be found by introducing changes in the layout of the toroidal 

solenoid. 

The inter-level (top-bottom) winding capacitance can be reduced to a minimum by prevent­

ing any overlap between the primary and the secondary, or between any primary and primary. 

This can be imagined by having a spring wound into a toroid. Then, another spring of the same 

size and number of windings is wound into another toroidal shape. Now, the second toroid is 

brought to be in the center of the first toroid such that both toxoids lie in the same plane, and 

the windings of the inner toroid get between the windings of the outer toroid. Therefore, there 

is no overlap between any primary and secondary toroid windings. On-chip layout is the same 

implementation except that structures are rectilinear, although non-rectilinear structures can 
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Figure 4.6 Toroidal solenoid transformer (with no shield) characterization 
results using a network analyzer 

be implemented in more advanced processes. The implementation of the toroid turns out to 

be simple on silicon and no inter-level overlapping is maintained. 

The structure described in this section is an development of the concept described in [21]. 

It describes a structure of a toroidal inductor where the top-bottom capacitance is minimized. 

The inductor structure can be modified and developed to become a transformer as described 

in sections 4.9.1, and 4.9.2. 

4.9.1 No-overlap toroidal transformer design 

An example of layout implementation is shown in Figure 4.9. This is a toroidal solenoid 

transformer. The connection to pads is not shown. Usually the connections can be taken 

from the corners of the transformer on both sides of the diagonal line. A zoom is shown in 

Figure 4.10. The windings of the primary are close to the windings of the secondary and at 

the same level. There is no overlap of windings between the primary and the secondary, the 

primary to primary, or secondary to secondary windings. A MATLAB script file listing, of the 
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Figure 4.7 Chip micrograph of toroidal solenoid transformer (with a 
polysilicon shield underneath) in a 0.18/im CMOS 

program that generates this structure in ASITIC, is in Appendix B.3. 

4.9.1.1 Inductance and capacitance calculations 

The mutual inductance calculations are subject to Eqn 4.3. As for the parasitic capac­

itances, they are simpler to calculate than in section 4.6. The self parasitic capacitance is 

only to the substrate. The coupling capacitance between primary and secondary is only the 

side to side capacitance at the bottom and the top layers. Since the capacitance is decreased 

dramatically, the resonance frequency fres is improved greatly because of this architecture. 

4.9.2 Minimal capacitance toroidal transformer design 

The contribution of the parasitic side capacitances mentioned in the previous section can 

be minimized to a fringe factor by introducing layout changes to the structure in Figure 4.11, 

and Figure 4.12. This can be done if the winding segment of the primary is laid out in the 

lower (upper) layer, the winding segment of the secondary that is adjacent to the primary is 
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Figure 4.8 Toroidal solenoid transformer (with shield) characterization re­
sults using network analyzer 

laid out in the upper (lower) layer. In this way, the only contribution of this factor is close 

to the via when the layers change, introducing very small contribution of capacitance to this 

factor. A top view of an example toroidal transformer with this feature is shown in Figure 

4.11. Figure 4.12 shows the primary windings separated from the secondary windings with no 

side capacitances except the minimal capacitance at the via corners. A MATLAB script file 

listing, of the program that generates this structure in ASITIC, is in Appendix B.2. 

If the self winding capacitance to substrate is to be minimized, the first metal layer needs 

to be built on a thick oxide layer of around 5//m. Another solution is to etch the substrate 

underneath the toroid. Air can replace the etched substrate and air replaces the substrate. In 

this way, the self capacitance to ground can be minimized too. 

If the toroidal solenoid is to be implemented on chip, with a custom process, it will provide 

a high k coupling and high resonance frequencies, and the magnetic flux will be contained 

to the toroidal structure, and not injected to the substrate as in the case of interleaved and 

concentric transformers. 
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Figure 4.9 Non-overlap toroidal solenoid in ASITIC (connection to pads 

not shown) 

4.10 Implementation in custom ISU 2u process 

A chip containing several toroidal solenoid structures was designed in Custom ISU 2u 

process. The great advantage of this process is that it can be completely customized by the 

designer. Twelve Toroidal solenoid Transformers were designed and laid out. Since the whole 

wafer can be utilized for the layout for a fixed charge, the total area was about 10mm X 12mm. 

Four 2u chromium masks were generated. The first mask was for the substrate contacts. 

The first metal layer occupied the second mask, while the Inter-metal vias were generated by 

the third mask. The final mask was for the upper metal layer. 

The design of the process was to grow a 5u thick oxide layer on the substrate first. Then an 

aluminum metal-one layer is grown with thickness of around 3u in order to reduce the ohmic 
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Figure 4.10 Non-overlap toroidal solenoid in ASITIC (zoom) 

loss. A thick oxide layer is grown between the lower metal layer and the upper metal layer. 

This thickness is around 15um. This can be achieved by using the same via mask three times. 

Finally, the top metal layer is grown using 3/im aluminum. 

Up to the writing of this dissertation, the Plasma Enhanced Chemical Vapor Deposition 

(PECVD), had a pressure leak. The formation of the silicon wafer was halted till the equipment 

is restored. A layout of the negative layers of the test chip is shown in Figure 4.13. 

4.11 Contribution summary 

In this chapter, analysis of monolithic integrated transformers is presented. Several toroidal 

transformers were fabricated in a 0.18/z CMOS process. Characterization results show a reso­

nance frequency above 5GHz for a toroidal transformers with an |S'i:s > 0.3. 
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Figure 4.11 Minimal capacitance toroidal solenoid in ASITIC (connection 
to pads not shown) 

Other structures are developed where the self or coupling parasitic capacitances are min­

imized to maximize the resonance frequency of the transformer and improve its performance 

parameters. This structure depends on the concept of eliminating the overlap of top-bottom 

metal layers, and maximizing the horizontal distance between the windings in the same layer 

to minimize the parasitic capacitances. The structures are intended to be fabricated in the 

custom ISU 2/i process. 
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Figure 4.12 Minimal capacitance toroidal solenoid in ASITIC (zoom) 
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Figure 4.13 Negative layout of test chip in ISU 2u process (zoom) 
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CHAPTER 5. Microstrip line modelling 

5.1 Introduction 

In this chapter, the design of edge coupled microstrip lines (MSL) is discussed. They are 

placed between the chips on the printed circuit board. The choice of the MSLs depends on 

several factors and the priority of these factors. One of these factors is the speed of the signal 

that needs to be transmitted along the line. Another factor is the level of electromagnetic 

interference that the interconnection circuit has to comply to. In this chapter, the choice of 

laminate material for the PCB is discussed. Several laminate material features are analyzed. 

Simulations of the power transmission and loss in the signal, while being transmitted through 

the MSL are presented. 

5.2 Laminate materials analysis 

5.2.1 FR4 laminate material 

The most common choice of laminate material for low frequency use is FR4 material because 

of its cost, and because it doesn't need a special process to manufacture and to print the metal 

layers on it. However, there are several problems with this material when we try to implement 

it for high-speed digital data transmission. Below is a brief discussion of them. 

The problem with this material is its dissipation factor, tan(d), at 1 MHz. This is an 

order of magnitude higher than most other materials. Knowing that the attenuation factor, 

&d = tt/ tan(d) VZC, is a direct function of both the dissipation factor and frequency, this 

leads to a very poor performance at Giga-Hertz frequency range. This can be demonstrated 

in different frequency components of the signal being attenuated at different rates depending 
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on the frequency. This creates distortion in the signal shape. 

The other disadvantage of FR4 material is its high dielectric constant, er ~ 5.4, which 

means that signal is transmitted at a lower propagation velocity than for other materials with 

lower dielectric constant. The other problem associated with FR4 materials is the variation of 

its dielectric constant with frequency and its reproducibility. Since the propagation velocity, 

v, depends on er, v = c/v/e7, this would result in different frequency components of the signal 

arriving at different times at the receiver. This leads to a phase distortion in the received 

signal. 

5.2.2 Microwave laminate materials 

Due to all of the above problems associated with the use of FR4, other materials were also 

considered such as GML1000 [17], and Rogers 4003 [18]. These materials are primarily used 

for microwave applications. As shown in Table 5.1, the GML1000 material is very comparable 

is performance to Rogers4003 material. 

Table 5.1 Comparison of different laminate materials 

tan S er Cost (normalized) (18" x 24") 
FR4 < 0.03 @ 1 MHz < 5 . 4  @ 1  M H z  1 
GML1000 0.003 @10 GHz 3.05 @ 10 GHz 1.33 
Rogers 4003 0.0027 @10 GHz 3.38 @ 10 GHz 10.03 

The dissipation factor is almost the same for both materials. For GML1000, the dielectric 

constant is smaller than the one for Rogers4003. In the last column, the cost of one laminate 

PCB is almost an order of magnitude smaller for G ML 1000 than for Rogers4003. Because of 

the difference in cost, GML1000 material is used in simulation and analysis. 

5.2.3 GML1000 and FR4 laminate material comparison 

In this section, a comparison analysis between FR4 and GML1000 materials is performed. 

From Table 5.1, it can be seen that GML1000 material enjoys having much smaller tan(£) than 

FR4. This results in much less attenuation of the transmitted signal at higher frequency. If a 
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data transmission speed up to 10 Gbit/s RZ code, or 20 Gbit/s NRZ code is considered, then 

frequency contents, up to 10 GHz, are required for analysis. 

The objective of the analysis is to compare the s-parameters of both laminate types. This 

will give a good indication of how the frequency components of the transmitted signal are 

attenuated at the received end. 

An HSPICE FS simulation file was written in order to generate the RLGC matrices of the 

TL placed on FR4 laminate PCB. A similar simulation file is found in A. 1 for a transmission 

line (TL) placed on GML laminate PCB. Afterwards, an HSPICE circuit simulation file is 

written to generate the S-parameters for the TL. A similar file is listed in A.2. The output of 

the simulation is a table of S-parameters graphed in Figure 5.1. 

f r e q  (  1  , 0 0 0 G H z  t o  1 0 , 0 0 C - H 2 )  

Figure 5.1 Si2 (dB) in blue and Sn(dB) center red dot in FR4 

This graph is for the S-parameters of the FR4 material. Sii(dB) is placed in the center of 

the smith chart where the TL is terminated with an impedance almost equal to the charac-
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teristic impedance of the transmission line. Since Sn(dB) is the TL reflection coefficient, then 

this ensures that no signal power is reflected back from the transmitter. Note that Sn = S22 

in this case since the TL is terminated equally at both ends. 

As for S12, it represents the transmission coefficient of the signal. At low frequencies, 100 

MHz, almost all of the signal is transmitted along the TL. Therefore S12 is almost 1. As the 

frequency increases, the phase distortion of the signal, due to the transmission, appears visible 

in the spiral path that S12 takes. S,2 decreases in magnitude because of the higher attenuation 

the signal experiences as the frequency gets into the GHz range. If the TL is very long, then 

S12 reaches the center point eventually. Figure 5.2 shows S'n and Si2 plot on a smith chart as 

a function of frequency from 0.1 GHz to 10 GHz. The material investigated is GMLIOOO. Su 

can be seen as a small dot in the 

f r e q  (  1  ,  O O O C - H 2  t o  1  0 ,  O O G H 2  )  

Figure 5.2 Si2(dB) in blue and S'n (dB) center red dot in G ML 

center of the smith chart. For any frequency, it can be observed that the S12 magnitude is 

larger for a TL on a GMLIOOO material as in Figure 5.2, than for a TL on an FR4 material as 
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in Figure 5.1. This clearly demonstrates the lower loss feature of GMLIOOO materials. 

Figure 5.3, illustrates the magnitude of attenuation of the signal, as a function of frequency, 

for TL's on FR4 PCBs, and GMLIOOO PCBs. Note that at 10 GHz the attenuation in the 

FR4 case is more than -5dB for 10cm. On the other hand, the GMLIOOO case achieves an 

attenuation of less than -0.8dB. 

f  r e q ,  G H z  
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f  r  e q ,  G H z  

Figure 5.3 Si2(dB) in FR4, lower blue, and GMLIOOO, upper red 

- 3 0  

- 4 0  

- 5 0  

- 7 0  -

80  

5  3  6 7  8 9  1  D  4  
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Figure 5.4 S'ii(dB) in FR4, upper red, and GMLIOOO, lower blue 

Figure 5.4 shows Sii(dB) for both FR4 and GML cases. The significance of this illustration 
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is to show that Su in both cases is very small, under -40 dB. This represents good matching. 

The peaks and bottoms present that the matching is not completely perfect and depends on 

frequency. This matching is needed to have a proper test setup. 

5.3 Contribution summary 

This chapter provides a brief comparison study of GMLIOOO and FR4 materials for PCB 

circuits. In this chapter it is proposed that GMLIOOO material might be preferable over FR4 

material for high speed circuits. This is due to the higher performance characteristics of the 

GMLIOOO material such as a stable er over a large frequency range, low loss factor, cost and 

compatibility with standard manufacturing process. 
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CHAPTER 6. Bonding wire modelling toolbox in HSPICE and MATLAB 

6.1 Introduction 

This chapter discusses modelling the bonding wire (BW), which is a metal wire that is 

usually made of gold and connects the chip pad to the PCB pad, or to the lead pins of the 

package. At low frequencies, the parasitic resistance and inductance of the BW have minimal 

negative effect on the quality of the signal that passes through the BW and into or out of the 

chip. The electrical model for the BW is needed to be included in the simulation of a high 

frequency serial link especially in the GHz frequency range. 

The BW models that are currently used in circuit design consist of lumped elements of 

inductors and capacitors, and resistors. While these models can accurately describe the elec­

trical behavior of BW at relatively low frequencies, these models are not accurate enough to 

describe the BW at frequencies in the GHz range. One of the reasons is the skin effect of 

the resistance of the bondwire. The resistance becomes a function of frequency. In addition 

the inductance itself changes with frequency. Therefore a distributed model is developed to 

capture the different parasitic effects. 

Several approaches already exist in BW modelling. One approach is to perform a full 3D 

electromagnetic modelling using FastHenry[32] software as in [56]. In [51], FastHenry was 

used to model the bondwire. In order to capture the curvature of the bondwire, 3D pictures 

are taken for the actual bondwire, and a special software analyzes the pictures to create a 

mathematical model for the curvature. A different approach models the BW as a straight 

line structure as in [33] where the simulation is performed by a commercially available 3D 

electromagnetic software programs. 
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6.2 Objective of research 

The objective of the research in this chapter is to provide a fairly accurate electrical model 

for the BW. This model is in the form of a subcircuit model that can be used in HSPICE[30] 

simulations for a high speed serial link. The model does not use a 3D electromagnetic simulator. 

Instead, it uses an HSPICE 2D Field solver. It simulates the BW at many sections to emulate 

a third dimension along the path of the BW. The BW assumes a Chip on Board (COB) 

assembly. This is the choice of the packaging at high frequencies to eliminate the self parasitic 

capacitances and inductances, and the mutual capacitances and inductances of the lead pins. 

6.3 General description of BW modelling and design toolbox 

The bonding wire transmission line model is generated in HSPICE using the Field Solver 

(FS) capability. Matlab is used as an interface that generates the HSPICE simulation input 

files, and runs HSPICE within Matlab to generate the output files. Since the data is sent 

differentially, a pair of BWs is analyzed instead of a single BW, unless otherwise mentioned, 

throughout this chapter. 

The BW model makes use of the W-model that is offered in HSPICE 2001.2 edition. The 

W-element is a subcircuit that is able to model the frequency dependence of the resistance and 

conductance of the transmission line. The W-element is an improved step over the U-element 

where the resistance of the transmission line is not a function of frequency and the model. 

The U-element can only accurately model the transmission line at one frequency that should 

be provided by the designer. The U-element does represent the transmission line accurately if 

the signal power is spread over more than one frequency in the frequency spectrum. 

The BW toolbox allows for the electrical analysis of the BW characteristics like Z0, Z0m, 

and Zeven. It simultaneously produces a geometric 3D model to aid in the analysis. The BW 

toolbox can be used in high speed design. Many variables whether geometrical or electrical 

can be tuned and optimized to achieve the electric and geometric goals design. 
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6.4 The method of modelling 

There are two types of modelling involved. The first is a 3D geometrical model of the BW 

itself generated in Matlab and described in Section 6.5. The second is an electrical model, 

described in Section 6.6, of the BW generated in Matlab and HSPICE that can be plugged in 

as a sub-circuit in simulations. 

6.5 Geometrical model 

In the geometrical model, a chip on board model is developed. The substrate, and metal 

layers of a two layer PCB are modelled. A chip dielectric material and top metal layer are 

modelled on top of the PCB. Finally, a 3D geometric bondwire is modelled and represents the 

connection between PCB traces and on chip pads. A 3D geometric model of the structure is 

developed as shown in Figure 6.1. Table 6.1 lists the input parameters to the geometric model. 

Note that these parameters are also used for the electrical model as well. 

Figure 6.1 3D View of bondwire model with chip and PCB shown 

6.5.1 Substrate model 

There are two types of substrates: The PCB substrate and the chip substrate. The PCB 

substrate is built using HSPICE FS. The material used for simulation is a GML 1000 laminate 
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Figure 6.2 Side view of bondwire model with chip and PCB shown 

-2 o 2 4 6 e 10 

X 10"* 

Figure 6.3 Top view of bondwire model with chip and PCB shown 

material as in Figure 6.1, 6.2, and 6.3. It's a two metal layer material where the dielectric 

material (green) lies between the upper and lower metal layers. The bottom layer is ground 

(blue) while the upper layer consists of signal traces layer (purple). The PCB pads are modelled 

in the top metal layer of a PCB. 

Figure 6.2 presents a side view of BW. It is modelled in the following way. First, a thin 

layer of insulation glue separates the PCB from the chip. Then the substrate of the chip is 

modelled on top of that. The chip dielectric material is modelled up to the top metal layer 

(collectively shown as Cyan). Afterwards, the PCB pads are modelled in the chip top metal 

layer. 
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Table 6.1 Input geometrical parameters to BW toolbox 

Parameter Typical value Description 

Printed Circuit Board 

tg 35 x KM Thickness of GND plane of PCB 
hp 1.5 x HT3 Thickness of dielectric layer of PCB 
tp 35 x 10-5 Thickness of bondpad of PCB 
wp 250x 10-6 Width of bondpad of PCB 
spacep 200 x 10-6 Inner edge to edge distance for PCB pads 

PP 125 x 10"6 Extension of PCB bondpad under bondwire 
msl_len .5 length of PCB microstrip line in m 

Chip 
wc 50 x 10"6 Width of bondpad of chip 
space 50 x 10"6 Inner edge to edge distance for chip pads 
pc 25 x 10-G Extension of chip bondpad under bondwire 
tc 9 x 1 0 - 7  Thickness of bondpad of chip 
he 7.4 x 10-4 Thickness of dielectric layer of chip 

Bondwire 
nop 100 number of BW segments generated 
rad 25 x 10-^ Radius of bondwire 

6.5.2 Bonding wire model 

A 3D geometric model of the wire is developed. It consists of a set of horizontal cylindrical 

cross-sections along the path of the BW, which spans from the PCB pad to the chip pad. 

The solid cylinder radius is fixed for all cross-sections, and equals to the radius of the BW. 

There is a room of improvement here where the cross section of the BW can be improved to 

be parabolic, where the BW angle is steeper, that mimics more the actual cross section of the 

BW. The present case assumes that the elevation angle of the bondwire is not steep along the 

path from PCB to chip. 

Consider a top view of the BW plane as in Figure 6.3. In addition, assume that there is a 

centerline that can be drawn from the center point between the chip pads and the PCB pads. 

Then the axis of the cylinder is always parallel to that centerline. 

The number of cross-sections needed along the path and the length of the cylinder are 



www.manaraa.com

78 

Table 6.2 Input electrical parameters to BW toolbox 

Parameter Typical value Description 

Printed Circuit Board 
condc 57.2 x 106 Conductivity of chip metal 
ere 4.1 Dielectric constant of chip dielectric material 
ltc 2.7 x 10-3 Loss tangent of chip dielectric 

Chip 
condp 57.2 x 1QG Conductivity of PCB metal 
erp 3.05 Dielectric constant of PCB dielectric material 
ltp 2.7 x 10-3 Loss tangent of PCB dielectric 

Bondwire 
condbw 57.2 xlOG Conductivity of bondwire 

determined by the frequency content of the signal that is transmitted along the BW. Con­

sider a metal interconnect through which a high frequency clock signal is passing. The signal 

wavelength can be calculated as 

where c q  is the speed of light, er is the effective dielectric constant of material. / is the 

frequency of operation. 

For the metal interconnect, with length Z, to be considered as a transmission line, I > k\. 

k is constant around 0.1. 

Note that for a 5GHz clock in a 10Gbit/s serial link over a GMLIOOO material, er,e// < 3.05. 

Then A > 3.4 x 10~2m. The length of the bondwire ranges from 450/iin, in the case of COB 

assembly, to 1 — 4 mm in the case of a larger package with leads. 

The BW segments lengths are intentionally made small in the toolbox so that the curvature 

of the BW is considered in the analysis. For the geometrical model, the BW segments are on 

the order of 100 segments per 0.5mm. That's 5// m per segment. 

The final electrical model can be just few segments that capture the cases of curvature such 

as: 

• BW on metal on PCB 



www.manaraa.com

79 

• BW on PCB dielectric 

• BW on metal on chip 

and can be built into the subcircuit model. 

As for the curvature of the BW, it can be modelled using a few coordinate points. The 

coordinate pairs are the distance from the PCB pad center along the centerline between the 

BWs, and the vertical distance from the PCB metal layer. 

6.6 Electrical model 

The electrical model of the BW is generated in HSPICE using Matlab as an interface. 

The geometrical parameters, listed in Table 6.1, and the electrical parameters, listed in 6.2 

are needed for simulation. HSPICE Field solver tool is utilized. Since an HSPICE simulation 

file is needed for each section of the BW, therefore the HSPICE input files are generated 

automatically through Matlab. Figure 6.13 describes the data flow and generates files in 

Matlab and HSPICE. The simulation starts with the differential microstrip line as in Figure 

6.4. There are three different Matlab files, where each is used for each BW stage. The files 

are: 

1. bw_o_pcbpad. m BW over PCB pads. 

2. bw_o-diel.m BW over dielectric material of PCB. 

3. bw_o_chippad. m BW over chip pads. 

These files are called by a Matlab function called gen2m.m. The output of these files 

is bw_seg.sp used as input to HSPICE FS. After the field solver is finished with simulating 

bw.seg. sp, it is deleted and regenerated again for the next BW segment. In this way, minimum 

usage of disk space is achieved. The output of the field solver for each segment, bw_seg.sp, 

is the RLGC set of matrices for the BW segment. The sets of RLGC matrices for each BW 

segment are collected into seg.rlgc file. This file will be recalled in the future to retrieve the 

RLGC matrices for each segment in the BW during HSPICE simulations. 
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Figure 6.4 Cross section of PCB with PCB interconnect 
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x 10"" 

Figure 6.5 Cross section of BW on PCB with PCB interconnect 

6.6.1 Bonding wire cross-sections 

The vertical cross-sections of the layout along the BW path are described in more detail. 

In the 3D geometrical model, if vertical cress-sectional views of the BW were considered, 

as in Figure 6.3, it can be seen that the number of metal layers and dielectric vary along the 

BW path. In the first stage, a model of the microstrip line is generated as in Figure 6.4 very 

x 10"4 

3  -

7 6 5 4 3 2 1  0  - 1  - 2  

Figure 6.6 Cross section of BW on PCB without PCB interconnect 



www.manaraa.com

7 6 5 4 3 2 1 0  -1 - 2  
x 10~* 

Figure 6.7 Cross section of BW on chip with PCB traces 

close to the PCB pads, the BW is on top of the PCB pads and at the same time on top of the 

PCB top layer as in Figure 6.5. This situation occurs because the BW is bonded to the center 

of the PCB pad, and not to its edge. Thus leaving some extra part of PCB pads underneath 

the bondwire as in Figure 6.5. 

The second stage is when the BW is on top the PCB, and over the dielectric material. This 

stage usually covers most of the BW path. The third stage is when the BW is above the chip 

pad before it reaches the center of the pad as in Figure 6.7. This is a small section of the path. 

Note in this case that we have a chip pad and then the chip is on top of the PCB. 

6.6.2 Bondwire circuit model 

Matlab also generates the file bw_sub.lib. This file is the BW sub-circuit model that 

can be used with other circuit elements like transistors, capacitors, etc in regular HSPICE 

simulations such as transient and AC analysis. Please note the following on the bw.sub. lib. 

The W-element in this sub-circuit has two variations taking into consideration if the BW is 

above a pad or above a dielectric layer. 

1. If the BW is above dielectric only then the number of ports is only four. Two for the 

input ports and two for the output ports of the BW pair. 

2. If the BW is above a pad then the W-element has four inputs ports: two for the BW 

pair, and two for the pads that are underneath it. In addition it has four output ports: 



www.manaraa.com

82 

two for the BW pair, and two for the pads that are underneath it. 

The four-port output of the BW W-element is connected to the 2-port input of the BW 

W-element in the following way as shown in C.12. The two output ports of the pads, in the 4 

output ports of the BW are connected to a very large resistance ~ 100 M fi and not connected 

to the next segment. The other two ports of the four output ports of the BW are connected 

to the two input ports of the two-port BW. Since the BW lands on the center of the pad then, 

electrically, the BW segment and the pad that lies directly underneath it assumed to have the 

same potential. Therefore, a very small resistance is added between the BW segment and the 

pad segment underneath it. Consequently, this arrangement effectively shorts them together. 

In summary, bw_sub.lib subcircuit is a 2 port i/p and 2port o/p network. The 8 port 

elements above are internally terminated to high resistance to simulate an open circuit in the 

case of pad extension under BW, or as a short when the BW touches the PCB or chip pads. 

6.7 Bonding wire analysis 

6.7.1 Introduction 

In this section, an analysis of the BW electrical parameters such as the odd mode, and even 

mode characteristic impedances, is performed. The Matlab interface developed allows for a 

lot of variations in the BW position, shape, thickness, spacing between pads, and many other 

options as in 6.1, and 6.2. Therefore, a lot of analysis can be performed on the BW model to 

produce an electrical model with an optimal performance depending on the application. 

6.7.2 Bonding wire optimization problem 

Generally speaking, the BW performance problem can be mathematically formulated as a 

nonlinear constrained optimization problem. The optimization function can be to minimize 

the error in the characteristic impedance relative to a reference impedance. The objective 

function can be formulated as: 
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mî^variable || ̂ o,desired -^o,simulated (6.2) 

such that 

lowerbound < variable < upperbound (6.3) 

(6.4) 

where variable can be any or all of the parameters in Table 6.1, electrical variables, as in 

Table 6.2 characteristic impedance depending on the driver output impedance and the PCB 

traces. The optimization problem can be nonlinear. Several nonlinear optimization algorithms, 

summarized in [4], can be utilized in reaching a local minimum for this error function. 

6.7.3 Bonding wire characteristic impedance 

The general characteristic impedance of a single BW can be written as 

where R is the resistance of the conductor in fZ/m. L is the inductance of the conductor in 

H/m. G is the conductance of the conductor in mho/m. C is the capacitance of the conductor 

in F/m. Since the information is sent differentially over a pair of BW, then the parameters 

that we need to investigate are the even mode and odd mode characteristic impedances. 

6.7.4 Odd mode and even mode characteristic impedances 

The case of odd mode signal propagation happens when a differential signal is sent on a 

pair of transmission lines. In the present case the transmission line is in the form of BW pair. 

Since the currents passing through the BW pair are equal but are 180 out of phase then the 

effective inductance seen by each BW will be the self-inductance minus the mutual inductance 

between the BWs [2]. In mathematical terms, for two conductors: 

(6.5) 

(6.6) 
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where C\\ = C\g + C\2. C\g is the self capacitance to ground. 

Since the voltage on one BW is equal in magnitude but 180 out of phase to the other 

voltage, the effective capacitance between the BWs is the BW self-capacitance to ground in 

addition to twice the mutual capacitance seen between the BWs. As a result, the effective 

capacitance increases [2]. 

where C\\ = C\g + C12, Ln is the mutual inductance between BWs, and k is the coupling 

coefficient. 

Figure 6.8 shows the self characteristic impedance of one of the BWs in a BW pair. Two 

design variables were varied. The first one is the BW radius while the second one is the spacing 

between the chip bonding pads. 

In Figure 6.8, the BW height is plotted in a thick gold color from the PCB pads to the 

chip pads. In general, there are several trends along the BW path. Z0 begins at the point 

where the BW intersects with the PCB pad center. Z0 = 120(2. Z0 increases gradually till 

the distance x = 1 x 10 4. This is due to the gradual lifting of the BW from the PCB metal 

pad. For 10~4 < x < 4.2 x 10~4, the BW pair is just above PCB dielectric. Z0 increases 

sharply just after x > 10-4. This happens when the BW passes the PCB metal under it. 

When x > 4.2 x 10-4, the BW passes over the chip pads, and Z(> drops abruptly and reaches 

205 — 2300 depending on the design variables. 

For a constant BW radius, increasing the chip pads spacing from 50/xm to 200/xm increases 

Z0 close to the chip edge. For example, when keeping BW radius constant at IO//111. chang­

ing the spacing from 50/xm, blue curve, to 200//m, magenta curve, increases Z0. Intuitively, 

increasing the chip pads spacing decreases the coupling capacitances but increases the mutual 

inductance. Hence the increase in Z0. A similar argument can be said about the other case 

even (6.7) 

6.8 Design example for Chip on Board 
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when the radius is fixed at 15/tm. Increasing the pad spacing from 50/iin, green curve, to 

200/tm, red curve, increases Z0. 

For a constant chip pad spacing, increasing the BW radius from 10/tm to 15/iin decreases 

Z0 along the whole path. For example, when keeping chip pad spacing constant at 50/mi, 

changing the BW radius from 10/tm, blue curve, to 15/mi, green curve, decreases ZQ by about 

25f2. Intuitively, increasing the BW radius increases the coupling capacitances but decreases 

the mutual inductance. Hence the decrease in Z0. A similar argument can be said about the 

other case when the chip pad spacing is fixed at 200/im. Increasing the BW radius from 10/xm, 

magenta curve, to 15/zm, red curve, decreases Za by about 25fl 

ZO vs BW segment from PCB to chip 
300 

280 

260 

240 

220 

S 200 

180 

—' sp50u rlOu 
— sp50u r15u 

sp200u r10u 
—— sp200u r15u 

160 

140 The BW in gold curvature function is shown for illustration 
BW height=1 E-5*Zo 

120 

100 
3.5 4.5 0.5 5 2 2.5 

BW segment from PCB to Chip 

Figure 6.8 ZQ for chip on board assembly 

Figure 6.9 represents Z0m and Zeven of the BW design example. Zeven is usually greater 

than Z0dd due to the increase in capacitance, and decrease in inductance in Zocid- Varying the 

chip pad spacing and BW radius leads to a similar behavior to Za in Figure 6.8. 
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Zodd vs distance from PCB to chip 
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Figure 6.9 ZMi,i, Zeven for chip on board assembly 

6.9 Design example for modified Chip on Board 

In Figure 6.1 the chip surface is not at the same level as the PCB metal level. If the chip 

level is the same as the PCB metal layer, then ZQ can be expected to be flat along the BW 

path, and less discontinuity is observed. Figure 6.10 shows a modification of the COB assembly 

where the dielectric of the PCB is removed under the chip. The level of the chip is made to 

be the same as the PCB metal layer. 

Figure 6.11 and Figure 6.12 represent Z(). and Zeven and Z0(u, respectively. Note that 

Zeven is almost constant along the path of the BW except at the ends. If the BW height above 

the dielectric material is constant, and the chip pad spacing is close in width to the PCB 

pad spacing, then Zeven, and Z0m are almost constant along the BW path. One example is 

for spacing of 200/xm and BW radius of 15//m and is shown in red in Figure 6.12. Table 6.3 

presents the total RLGC values for this case. 
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Figure 6.10 3D View of modified chip on board 
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Figure 6.11 Z0 for modified chip on board assembly 

6.10 Limitation of approach 

Bonding wire modelling using the HSPICE Field Solver approach has some limitations. 

The FS in HSPICE only takes into consideration the perpendicular magnetic waves around 

the cross-section of the BW. The lateral magnetic fields, along the path of the BW, are not 

taken into consideration. This approximation holds for a few GHz frequency range. Another 

limitation is that the bonding wire is always assumed to have vertical cross-sections that are 

circular. This is an approximation in the geometry of the interconnection. The best way 

possible is to use a 3D electromagnetic modelling software to perform a 3D model of the 

ZO vs BW segment from PCB to chip 
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spSOudSu 
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Figure 6.12 Zocid, Zeven for modified chip on board assembly 

Table 6.3 Input electrical parameters to BW toolbox 

Parameter Total value Unit 

R-o 22.8 f2 
Rf 9.9 x lO"7 n 

Go 0 mho 
Gf 2.44 x 1CT16 mho 

Geven 14.96 fF 

Leven 696 pH 

Godd 25.1 fF 

Lodd 133 PH 

bonding wire. 

6.11 Contribution summary 

In this chapter a bondwire modelling toolbox is developed for the case of Chip on Board 

assembly. The toolbox produces a circuit model that can be used in HSPICE simulation. The 

analysis shows that the level of impedance discontinuities in the BW decreases if the BW does 

not change the height along its path from the PCB to the chip. If the BW is flat (ribbon) then 

the impedance variations can be greatly reduced. 

Zodd vs BW segment from PCB to chip 

Zeven vs BW segment from PCB to chip 
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CHAPTER 7. RF and Gbit/s electrostatic discharge protection design 

7.1 Introduction 

In this chapter, the Electrostatic Discharge (ESD) problem is addressed in the transmitter 

and the receiver. The mechanism of ESD protection is to provide an alternate low impedance 

path for the current spark to be discharged to the substrate or ground of the chip instead of 

entering the internal circuitry and damaging sensitive active and passive devices. 

The ESD event can be the result of human hand touching the chip or even getting close 

to it. The human body can be charged up to several kilo-Volts. One source of the charge 

accumulation is the person walking on carpet. If the human hand touches a chip already 

charged at a ground potential, a potential difference will result in discharge of the charge on 

the human body to the chip. The electrical model for this phenomenon is called the Human 

Body Model (HBM) [59]. This ESD event can be damaging to the chip. 

Another source of ESD event is when the chip charges itself, and then discharges after one 

of its pins is connected to another potential point like ground. If it is not well protected, the 

ESD event of this type is faster and more critical to the chip than HBM phenomenon. The 

electrical model for this event is known as the Charge Device Model (CDM) [60]. 

In the normal circuit operating mode, the ESD device is off and virtually no current passes 

through it. The input signal bypasses the ESD device and is directed to the internal circuitry 

which is usually the gate of a MOSFET transistor or the base of a bipolar transistor. In 

principle, the ESD device should not affect the normal operation of the chip internal circuit. 

In reality, the ESD device does affect the electrical properties of the signal path, and careful 

consideration of the tradeoffs should take place to ensure the optimal performance of the chip. 

In the case of an ESD event, The ESD device is activated through the voltage breakdown 
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characteristics of the device. The ESD device bypasses the internal circuitry, and provides an 

alternate low impedance path for the large current to be dissipated in it. The ESD device is 

designed to be large enough to be capable of passing current on the order of several Amperes. 

However, using a large device comes at the cost of increasing parasitic capacitances at the node 

where the ESD protection is introduced. 

If the internal circuitry of the chip does not have ESD protection devices, then its vul­

nerability to ESD damage is high. If an ESD current affects the chip and passes through the 

internal circuitry, a damage can occur to it in the form of dielectric breakdown of gate oxide 

[65]. In a typical submicron CMOS process, the gate oxide material used is usually Silicon 

Dioxide, S1O2, which has a dielectric strength of around 8 — 10MV/cm. The thickness of SiO? 

is on the order of 40 — 50Â in a typical CMOS process where the minimum drawn feature length 

is 0.18\xm. Therefore, if a voltage in excess of 3V is applied to the gate, it can be damaged. 

As a result, a voltage applied to the transistor gate of this magnitude should be prevented . 

Another form of ESD damage is due to thermal damage of SiC>2 and metal interconnect. 

This happens because of the poor thermal conductivity of SiC>2. The I2R heat is generated in 

the path that the current takes such as a metal interconnect. Since the ESD event elapses for a 

short time with large current, the heat is not dissipated as quickly as needed. The temperature 

of the Si@2 is raised locally to a degree that the silicon is damaged and the metal interconnect, 

is melted. A short circuit or an open circuit can occur and in many cases the damage can 

be seen under the microscope as a localized burn or melting of the metal interconnect. In 

addition, high leakage current in the ESD device can be observed after breakdown [2]. 

7.2 Merits of ESD protection structures 

The ESD protection structure should be able to meet several goals, some of them are 

challenging. In many cases, there is a compromise between the high protection level, circuit 

operation frequency, size, and silicon area in order to achieve the best ESD protection circuit 

for a specific chip or design. Some of the merits of ESD protection structures are listed below 

[2]: 
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1. The ESD device should be able to shield the internal circuit from an ESD event without 

degrading the performance of the chip in terms of bandwidth or voltage swing. The ESD 

device should not act as a low pass filter limiting the maximum frequency of operation 

of the device, or the maximum speed of data transmitted. The parasitic capacitance of 

the device should be maintained at a minimum. 

2. The ESD device should be able to maintain a high ESD current in the range of several 

Amperes and high ESD voltage, around 2 — 4kV or more, efficiently without damaging 

itself. 

3. The ESD device must be reliable enough to protect the internal circuit repeatedly, and 

not only once, without self destruction such as melting of metal interconnect or dielectric 

damage. 

4. The ESD device should be able to clamp the ESD voltage to safe levels for the internal 

circuitry. 

5. The ESD device should not limit the input voltage swing of the input circuit and its 

trigger voltage should be above that range. 

7.3 ESD devices operation 

In the following sections, a brief introduction to several basic ESD devices is presented. This 

includes ESD diodes, Grounded Gate NMOS (ggNMOS), Gate Coupled NMOS (gCNMOS), 

and Silicon Controlled Rectifiers (SCR). 

7.3.1 ESD Diode 

The pn junction diode is the simplest ESD protection device and can operate as an ESD 

device in the forward bias and reverse bias mode. In the forward bias mode, the threshold 

voltage is around 0.5F [15]. it can operate as a protection device in the forward bias mode 

where a small voltage, 0.65F, appears across its terminals. It has a forward bias resistance on 

the order of 20 — lOOf1/[im. 
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The forward bias current voltage relationship can be written as [62]: 

To = - l) (7.1) 

where 

Id is the current that passes through the diode, q is the electron charge, 1.602 x 10_19C. Vp 

i s  t h e  t e r m i n a l  v o l t a g e  a c r o s s  t h e  d i o d e ,  n  —  1 .  k  i s  B o l t z m a n n ' s  c o n s t a n t ,  1 . 3 8  x  1 0 ~ 2 3 J / K .  

T is the absolute temperature in Kelvin, 300-Ff°. A is the junction size, rii is the intrinsic 

concentration of electrons in the material. Dp and Dn are the diffusivities of the holes and 

electrons, respectively. Lp and L/v are the minority carrier diffusion lengths of holes and 

electrons in the n and p regions, respectively. No and N,\ are the impurity densities of donors 

and acceptors, respectively. 

At high currents comparable to ESD event levels, the current voltage relationship becomes 

[2] 

Ihigh = Is2 exP ^kT^) C^) 

and 

/<2='• (^r) |7A) 

where the diode becomes conductively modulated. This means that both the p and n concen­

trations contribute to the current and both are higher than the original doping concentrations. 

The conductivity modulation occurs after the carrier transient time in the lower doped region 

is reached. At first, the series resistance of the diode is high then it becomes lower when the 

carrier lifetime is reached. This time can be on the order of the transient time in the CDM 

signal. Therefore, care should be taken to make the carrier lifetime shorter than the transient 

time of the CDM discharge. 

In the reverse biased region, the leakage current is small and due to thermally generated 

carriers in the depletion region. When the reverse voltage increases, the carriers in the depletion 

region collide and produce electron hole pairs, and each one of them produces a set of electron-

hole pairs, and so on. This phenomenon is called avalanche multiplication. At this stage, the 
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diode conducts large amounts of current. The threshold voltage for breakdown is [62]: 

v-°=e~éf (7-5) 

where es is the semiconductor permittivity, and Emax is the maximum electrical field in the 

depletion region. The avalanche multiplication factor can be empirically written as [41]: 

= |7'6) 

where the Vj is the junction diode potential, and Vav is the avalanche breakdown voltage, n 

is a fitting number between 2 and 6. As Vj approaches Vav, M becomes very high and reaches 

oo. 

7.3.2 ESD Grounded Gate NMOS (ggNMOS) 

The NMOS transistor normal operation follows the square law model [52]. While normal 

NMOS transistors can carry small currents, ESD transistors are designed to pass currents in 

the range of several Amperes. From its name, the ggNMOS has its gate (G) and source (S) 

grounded. The drain (D) is connected to the node to be protected from ESD. If Vq — 0, and 

the drain voltage Vq is increased, no current passes between the drain and source till V[> = Vav 

which is the avalanche voltage of the device. 
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Figure 7.1 Grounded Gate NMOS with lateral bipolar NPN 

The NMOS transistor has a parasitic lateral NPN bipolar transistor. The NPN collector 

is the NMOS drain, while the NPN emitter is the NMOS source. The NPN base is the same 
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as the NMOS substrate. The substrate resistance can be seen as being connected to the base 

of the NPN. A schematic is shown in Figure. 7.1. As for operation of the device, the drain 

current is first negligible. As Vd is increased, the reverse biased drain substrate junction 

observes an increase in the number of electrons entering the drain from the substrate and 

the number of holes entering the substrate from the drain, due to impact ionization, giving 

rise to substrate current, 7SUb- /sub passes from the emitter to the substrate and through the 

substrate resistance. When V& becomes higher than Ve by approximately 0.5F, the lateral 

NPN is turned on and more electron hole pairs are generated. This turn on voltage happens 

at vd = vu and the corresponding Id = hi- It was shown that for a l/xm, channel length, the 

turn on time is on the order of 250ps [36]. After turn on, vd decreases, due to the availability 

of ic till a minimum voltage K,p is reached. The resistance is increased again because of the 

decrease of substrate resistance Rgub due to conductivity modulation [2]. Another breakpoint 

Vt2 is reached where a thermal failure affects the transistor. 

7.3.3 ESD Gate Coupled NMOS (gCNMOS) 

It is very desirable that Vt\ < Vt2 which means that the avalanche breakdown happens 

before the thermal breakdown of the device. This is important when the ESD device is designed 

as a multi-fingered structure; i.e. as a set of NMOS transistors connected in parallel. The 

gCNMOS consists of an NMOS device, a capacitor and a resistor. The capacitor C is connected 

between the gate and drain, while the resistor R is connected between the gate and ground. 

The bulk of the transistor is connected to ground while the drain is connected to the node 

where ESD protection is introduced. [20]. A schematic is shown in Figure 7.2. 

As for the ggNMOS, /sub, is responsible for turning on the lateral parasitic NPN bipolar 

transistor of the gCNMOS. Since the RC path increases Isub, less /sui, is needed from avalanche 

multiplications to turn on the transistor. Therefore, R and C are chosen such that Vti can be 

lowered. This is a useful method for turning on the NMOS transistor for less voltage and in a 

faster way than the ggNMOS case. 
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Figure 7.2 Gate Coupled NMOS with lateral bipolar NPN 

7.3.4 ESD Silicon Controlled Rectifier (SCR) 

The SCR device can be seen through the latch-up process that affects digital circuits 

manufactured on high resistivity substrates. As an example, a CMOS inverter consisting of an 

NMOS and PMOS transistors are drawn close to each other where the PMOS is placed in an 

N-WELL, is considered. The NMOS transistor has a parasitic lateral bipolar NPN transistor, 

while the PMOS has a parasitic vertical bipolar PNP. The NPN base is the N+ of the substrate 

through the substrate resistance. The NPN emitter is the NMOS source, and the collector is 

the n-well. As for the PNP, its base is connected to the well's P+, the emitter to the PMOS 

source, while the collector is connected to the p-substrate. The anode of the SCR is the PNP 

emitter, while the cathode is the NPN emitter. The n-well substrate and PNP source are 

connected to power supply while the p-substrate and NPN source are connected to ground [2]. 

In the case of an ESD event, the SCR is turned on when the anode to cathode voltage 

exceeds the breakdown voltage of the PN junctions at the collectors of the NPN and PNP. 

When the transistors turn on, they provide the current for themselves, and a negative resistance 

effect is observed. As a result, the anode to cathode voltage drops and the ESD node shunts 

to a low voltage Mi-
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7.4 Types of ESD protection 

There are several types of ESD protection structures depending on the purpose of the 

protection. Such ESD structures are implemented for power supply, input/output, and RF 

and Gbit/s circuit. Below is a brief description of each type. 

7.4.1 Power supply ESD protection 

In the case of a power bus protection, a grounded gate NMOS (ggNMOS) transistor can be 

used as a power supply clamp [65]. It provides a low impedance path between the power line 

and ground in the case of an ESD event affecting the power line. The gate and source of the 

NMOS are connected to ground while the drain is connected to the power line. The ggNMOS 

is OFF in normal operation. When activated, it shunts the power line to ground discharging 

the ESD current to GND without raising the supply voltage of the circuit to damaging levels. 

Another implementation of an ESD power clamp is through a set of diodes forward biased and 

connected in series [15]. The Darlington effect, which is the reduction of the diode voltage 

across the diode string due to lower current densities in later stages, limits the number of 

diodes that can be effectively connected in series. This effect can be eliminated by adding a 

bias network that adds a small current to the diodes across the string to bias them. A variation 

of this scheme is to add an SCR to the diode string as in [34] to lower the leakage current in 

the diode string. 

7.4.2 Input/Output ESD protection 

Another ESD protection type is for input/output circuits. In a line driver protection, the 

output pads are usually connected directly to the driver NMOS and/or PMOS drains. The 

ESD protection circuit is connected between the output pad and ground (GND). Another ESD 

device is placed between the output pad and the power supply line (Vdd). The purpose of 

these two circuits is to provide a low impedance path to a power supply in the case of a positive 

or negative ESD signal affecting the chip. 

Typically, a combination of diodes, ggNMOS, ggPMOS, and/or SCR devices can be used 
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as protection devices [64]. A similar approach can be implemented in the case of an input 

protection circuit. In order to reduce the trigger voltage of the input ESD device, a gate 

coupling NMOS (gCNMOS) is used [15]. The gCNMOS consists of an NMOS, a capacitor 

between the gate and drain, and a resistor between the gate and ground. The drain is connected 

to the input node. 

7.4.3 RF and Gbit/s circuit ESD protection and challenges 

The problem of ESD protection for RF and very high speed circuits is a challenging task. 

The challenge is in designing an ESD protection structure that is capable of at least Class 2 

(2kV-4kV) [59] level of protection. At the same time, it does not impede signals with high 

frequency content in the GHz range, and should turn on faster than the internal circuitry 

in order to achieve protection. In addition, it should be able to meet the ESD merits in 

Section 7.2. 

One challenge in RF ESD design is the accidental turn on of an ESD device even before 

avalanche breakdown happens. [5] and [65] show a correlation between the ESD trigger time Vti 

and the rise time of the input signal tr. In other words, the high dV/dt rate in the signal that 

passes through the ESD protection node can accidentally trigger the ESD device to turn on 

even below the original designed Vti level. For a reverse biased PN junction, in a ggNMOS for 

example, the capacitance is high. Since the current equation for a capacitor is i{t) = CdV/dt, 

i(t) can become high. This current can pass through the base of the lateral NPN to raise 

the base voltage, and turn on the NPN before avalanche breakdown happens. This can be 

catastrophic for an RF or high speed IC since it will create a short circuit at the input and no 

signal can enter the chip. 

For an NRZ signal with a maximum data rate of 10 Gbit/s, the bit period T^it is 100 ps. 

The rise time tT is about 30 — 50 ps. Let the voltage swing be 400 mV. This means that 

w =  = 1 3 3  x  1 0 ' ° v / s  | 7 J )  

In order to avoid this accidental triggering, dV/dt is designed to be less than the ESD 
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triggering rate. However, this is not an option in RF circuits or in Gbit/s rate integrated 

circuits. 

Another suggestion is to decrease the reverse biased junction capacitance of the drain of 

the ggNMOS. The cost of that is the inability to pass high ESD current because of the drain 

small size. As a consequence, the ESD protection level is lowered to levels, sometimes on the 

order of several hundred volts, as opposed to several kV protection in low speed chips. In some 

other circuits, the ESD is removed altogether and require an ESD free handling, assembly and 

testing environment. If extreme care is not provided in maintaining an ESD free environment, 

the chip yield is to be sacrificed since a large percentage of the chips are very vulnerable to 

ESD phenomena and many of them are prone to be damaged even by being close to a charged 

body. They can be self charged and destruct themselves by discharging. 

Diodes can be optimized to be included as ESD devices in RF ESD protection [53]. The 

diode layout is the same as an NMOS with the source connected to the substrate through P+. 

Two diodes are used to connect to Vdd and GND from the pad. They are forward biased in 

the case of an ESD event. The resistance along the ESD current path is minimized too. In [53], 

the diode network provides protection of 2 kV HBM with a maximum parasitic capacitance of 

150 fF per pin. If the pad parasitic capacitance, for a typical 75/z x 75/j pad, is around 25 fF, 

the total capacitance is around 175 fF per I/O pad. 

In [25], an SCR device is suggested as an ESD device. The device provides protection 

for a positive ESD pulse and a negative ESD pulse to Vdd and GND. The device parasitic 

capacitance is around 90 fF for a 4kV HBM ESD voltage. Copper is used as the interconnect 

metal layer instead of Aluminum because it can withstand more current, and therefore it can 

provide the same toughness for less parasitic to GND. The use of SCR in RF circuits is subject 

to the latch-up problem. This means that the ESD device may trigger and latch at a low 

impedance point in normal circuit operation and basically shorts the input node to ground. 

The device may accidentally trigger at high frequencies because of the dV/dt problem. If pads 

are considered, the total parasitic capacitance is 115 fF per pin. 

About [53], and [25], the following observations can be made: 
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1. Both approaches mention protection measured using the HBM model which is less severe 

than subjecting the model to the CDM test. The CDM test has considerable signal 

frequency content that can reach 1 GHz, and a rise time that is very short, on the order 

of less than 1 ns. 

2. The ESD protection approaches rely on the input signal being directly connected to the 

internal circuitry, and the ESD device protects it by diverting the ESD signal away from 

reaching internal circuitry. It is highly desirable to have the internal circuitry completely 

isolated from the outside world. In this case, the ESD event signal and the input data 

(or information) signal are isolated from the internal circuitry. Any transfer of data or 

information is done through capacitive or inductive coupling. 

The ESD isolation method for RF and Gbit/s circuits is the focus of the research in this 

dissertation. 

7.5 Thesis ESD protection design objective 

One of the objectives in this dissertation to develop an improved ESD protection scheme 

for RF and Gbit/s integrated circuits that has the following characteristics: 

1. The ESD structure should be able to protect the internal circuitry from high ESD tran­

sients, preferably Class 2 (2-4 kV) HBM and CDM. 

2. The ESD structure should have the minimum parasitic capacitance that can load the 

internal circuitry. 

3. The chip should be able to send and receive data up to 10 Gbit/s and frequency range 

of more than 5 GHz without being impeded by the parasitic capacitances. 

4. The internal circuitry is completely isolated from the outside world. This means that 

there is no direct wire connection from outside the chip to internal circuitry. 

5. The ESD structure should be reliable and withstand repeated ESD events effectively. 
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6. The structure is simple to design, layout and fabricate. 

Section 7.6 describes the new proposed ESD protection scheme contributed in this thesis 

work. 

7.6 Proposed ESD protection structure 

Figure 7.3 presents the proposed RF ESD protection scheme. It consists of the following 

1. Two identical monolithic transformers 

2. An ESD device connected between the transformers 

3. Spark gaps placed close to the pads 

The monolithic transformers are designed on-chip. They should operate as transformers up 

to 6 GHz minimum. The ESD device connected in the middle can be a set of diodes that operate 

in forward bias in the case of and ESD event. An SCR can be a choice too. It is important 

to observe that the middle point between the transformers is balanced and therefore can be 

considered as an AC ground. This is due to the fact that the signal transmitted is differential. 

The parasitic capacitance of the ESD device in the middle does not affect the normal circuit 

operation. As for the spark gaps, they are special devices fabricated in a standard CMOS 

process, and ignite and form a low impedance to ground during an ESD event. 

This ESD scheme is included in a 10 Gbit/s wireline data driver. It can be incorporated 

into the receiver too. Another application is RF circuits such as the input node to a Low Noise 

Amplifier (LNA). 

In section 7.6.1, and 7.6.2 an introduction is given to spark gaps and field emission devices. 

Section 7.6.3 presents a more detailed description of the proposed ESD structure. 

7.6.1 Characteristics and operation of spark gaps 

The spark gaps implementation as ESD devices is not a new idea. They were used as 

over-voltage protection devices in telephone installations long time ago [61]. The spark gaps 
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Figure 7.3 Driver ESD structure schematic with spark gaps 

work on the principle that if a large electrical field exists between two points, the accumulation 

of large positive charge on one point and large negative charge on the other node ionizes the 

air or the medium between them to the degree that the ionized air becomes conductive and a 

flow of electrons passes from one of the points to the other. The current flow takes the shape 

of an arc or a spark, hence the name arc gap, or spark gap. The following observations about 

spark gaps are listed below: 

1. The spark initiation delay time is defined as the time elapsed from the peak of the ESD 

event current signal to the peak of the spark gap current signal. It is largely dependent 

on the parasitic capacitance associated with the gap [63]. If the capacitance between the 

anode and the cathode of the gap is low, and the self capacitance of the anode to ground, 

and cathode to ground is low, the initiation delay time can be kept as a minimum. This 

can be shorter than the rise time of the CDM signal. 

2. In [12], page 195, it is stated that the avalanche initiation ions can travel the distance 
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of the arc gap with the speed of light. This is, of course, provided negligible capacitance 

effect exists across the gap. it can be assumed that the initiation delay-time is dominated 

by the parasitic effects, but not the avalanche-initiation phenomena. 

3. The luminous front of the spark in the spark gap travels at a velocity up to 3 x 107 cm/s 

[66]. Therefore, for a typical spark gap of around 3/xm, the travel time from the start to 

the end of the gap is about 10 ps. 

4. The arc channel radius can be calculated according to [8], as 

R = 0.93^^ (7.8) 

Where p is the density of air at atmospheric pressure 1.29 x 10-3g/cm3, I is current 

in kilo-ampere, and t is time in microseconds. This would approximately give an arc 

channel of radius in the order of a 1 x 10~9 m. 

5. Although [40] reported a shorting problem with spark gap devices with gap spacing less 

than 25/zm (0.4um aluminum thickness), this happened with a gap of only less than 

3 microns (3um Aluminum thickness) in [63]. Several factors affect the minimum gap 

spacing such as the process used, the metal type (Aluminum was used here), and the 

metal thickness chosen. 

6. The electrical model of the arc channel can be scaled from [27] and presented as a series 

combination of around 0.02 ohm and .5 nH for a 3/v, m. 

7. The spark gaps assume a 45 degree saw tooth shape [13] with several teeth. It was 

shown that it provides higher reproducibility than flat parallel shapes [48] [29], or 90 

degree shapes [13]. In addition, sawtooth interdigitaed arc gap structures show better 

reliability than point to point sawtooth structures [28]. On the other hand, it was 

reported by [47] that parallel plate spark gaps can provide good protection for the circuit 

where polysilicon material was used instead of high conductivity metal. 
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8. The average breakdown voltage for metal to metal gap spacing of Sum is around 250V 

for passivated gap, while it was around 175V for an unpassivated gap [13], while the 

voltage across the arc is in the order of 20V when the arc is present. 

9. The Aluminum or Copper metal that is used to build the spark gap can be replaced by 

a higher resistivity material such as polysilicon. The advantage of polysilicon is that it 

greatly reduces the melting and shortening of the metal when a spark occurs. Thus the 

reliability of the spark gap can be increased [46]. Another advantage is the ability to 

reduce the gap spacing and trigger voltage. This leads also to a faster response. 

7.6.2 Field emission devices 

The spark gaps usually depend on high electric field to ionize the atoms and molecules 

to form a discharge path along the gap. There is a considerable amount of heat is generated 

from the spark gaps when ignition is initiated. Another method of current discharge is field 

emission. Field emission happens when an a metal material is adjacent to a semiconductor 

material. The potential barrier for the electron in metal to overcome is much smaller than 

the potential barrier of metal to vacuum. If the distance, horizontally, or vertically, between 

two metal layers is small, on the order of tenths of a micron, electrons tunnel through the 

semiconductor and reach the other metal edge. This is called Field Emission. It occurs when 

the electrical field is on the order of 0.5V/Â [9]. If protection to the circuit is needed to be 

around 10V for example, then a semiconductor gap on the order of 20À needs to be fabricated. 

Special fabrication techniques are suggested by [38] : 

1. In the first method, a first metal layer (Ml) of thickness (Tl)is deposited over the field 

oxide (FOX). The field oxide is etched to the thickness of T1 below Ml. Thus the base 

of Ml is raised above FOX by Tl. The etching might go for a small distance underneath 

Ml. A second metal layer M2 is deposited. M2 is deposited on two levels; on Ml and 

on the field oxide. If the process is calibrated well and the thickness of M2 is calculated 

accurately, then there is a small area between Ml and M2 on the lower FOX layer that 

is very small in the order of few nanometers. A dielectric material deposited above the 
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whole structure seals the cavity and if this is done in vacuum, the gap is vacuumed. The 

edge of Ml and lower M2 can extend to a long range to make a wedge. 

2. The other method is to deposit a metal layer Ml on the substrate. Then a dielectric 

material is deposited on it leaving a gap of size R. Another dielectric material is deposited 

again leaving the same gap R. A third dielectric material is deposited on the whole 

structure including the gap creating a valley with a pinpoint in the gap R. Above that 

a metal M2 layer is deposited above the whole structure including the gap to form a 

metal pinpoint at the bottom of the valley. M2 is now the cathode that generates the 

electrons and the anode is Ml. This can be on the form of a wedge. Several wedges can 

be connected in parallel. 

An inverted method where a small wedge with a pin tip on the top as the cathode and the 

anode is above it is cited in [26]. The metal cathode can be made from semiconductor material 

that has a thin layer of metal deposited on it [7]. This method increases the resistance of the 

cathode since the maximum current can be controlled in the semiconductor by doping. If more 

current is affecting the wedge, the electrical field decreases and the current is diverted to other 

areas of the wedge [7]. 

7.6.3 Description and layout 

7.6.3.1 Transformers 

The transformers in Figure 7.3 are connected in series. The two ports of the primary are 

connected to the internal circuitry and the two ports of the secondary are connected to the 

bonding pads. The transformer layout can be planar interleaved, planar concentric, or toroidal 

solenoid (this can be fabricated when the process can be customized to have a thick dielectric 

material). A patent [21] describes an inductor layout where the magnetic flux leaving the 

center of the first inductor, enters the center of a second inductor. When connected together, 

both inductors form a single inductor where the flux is contained inside its elements and forms 

a loop. This method can be extended to lay out two transformers that form one transformer 

with the flux contained in it. 
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7.6.3.2 ESD protection structure 

On the secondary side, in the middle point between the transformers, an ESD protection 

circuit is placed and consists of a protection circuit to ground like a diode. The anode is 

connected to ground while the cathode is connected to the ESD node. An additional protection 

circuit to Vdd such as a diode can also be used. The second diode's anode is connected to the 

ESD node, while the cathode is connected to Vdd. This configuration is necessary in order 

to protect against both positive and negative ESD signals. The middle point between both 

transformers is always balanced during operation and can be considered to be AC ground. 

Therefore, the ESD structures (to GND or to Vdd) in the middle do not affect the circuit 

operation. The ESD devices can be large and have considerably large parasitic capacitances. 

7.6.3.3 Spark gaps 

The spark gaps are placed close to the bonding pads and on both sides of the secondary. 

The spark gaps can have a saw tooth shape of 45 degrees with 3/xm spacing. Another im­

plementation is to have the spark gap plates parallel to each other and have them made of 

polysilicon material which limits the amount of current in them and makes the spark gap ignite 

in more than one point. The advantage of this structure is to have a narrow gap between the 

anode and cathode and this makes the ignition threshold voltage smaller. The capacitance 

between the gap anode and cathode is kept less than 2 fF and the capacitance of the anode 

to GND and cathode less than 2 fF. The capacitive loading effect is minimal on the operation 

of the spark gap. If the height h of the polysilicon layer is known, then the ratio of the gap's 

vertical plate length Zgap to the gap horizontal spacing Sgap is the design parameter where 

'Sgap 

This ratio can be around 50. 
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7.6.4 Spark gap electrical model 

The electrical model of the spark gap was compiled from different sources to reflect the 

electrical behavior of the phenomenon as shown in Figure 7.4 and a symbol view in Figure 7.5. 

The elements are: 

» - * W 

•  •  v V •  - • *  o u u o  •  « . / ' • / • / *  e  
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4hI -* ,A/y * - *8 . , a 
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Figure 7.4 Spark gap electrical model 

1. A switch closes when the voltage across the gap is about 300 V. The closed voltage is 

around 20 V depending on the current across it. The close voltage can be represented 

by a diode with this voltage. 

2. A resistance of -Rspark = 20 mil in series with an inductance of Lspark = 0.5 nH, both are 

connected in series with the switch 

3. A capacitor from the cathode to ground represents the self parasitic capacitance of the 

cathode Ccathode < 2 fF. 
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S 

Figure 7.5 Spark gap symbolic view 

4. A capacitor from the cathode to anode represents the coupling capacitance of the cathode 

in the range of Canode < 2 fF. 

5. The cathode is connected to the node where ESD protection needs to be introduced. The 

anode is connected to ground 

6. To model the effect of a negative ESD event, the whole structure is repeated except that 

the closing voltage of the switch is negative this time. 

7.7 Mode of operation of the proposed ESD structure 

7.7.1 Normal mode of operation 

In the normal operation mode, the transformers, center ESD structure, and spark gaps act 

as part of the driver circuit in a wireline data communication serializer and deserializer scheme. 

The signals enter the transformer primary in differential current mode fashion. The four port 

transformer acts as an isolator. With a low cutoff frequency of 1.5 GHz, the transformer 

attenuates any frequency components of the input signal below that frequency range. In 

the differential input to differential output mode, the resonance frequency is 6 GHz. The 

transformer has a capacitance of 44 fF to ground. The mutual coupling capacitance between 

the primary and the secondary is around 40 fF. The secondary of the transformer shows 

an induced voltage depending on the time change of the input current signal dIpTimary  /dt 

and the amount of mutual inductive coupling between the primary and secondary M. In 
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the frequency domain, where the current signal can be written as a fourier series of all the 

frequency components of the signal,the induced voltage to input current relationship can be 

expressed as j2nfM, where / is the frequency of each signal component. 

Since the input signal and the output signal are differential, the voltage at the middle 

points between the two transformers at the primary and the secondary remain essentially 

constant. The voltage at those points does not substantially change as considerably compared 

to the input/output pads in current ESD scheme where the ESD node changes according to 

the input/output signal. The transformer was fabricated in a typical 0.18/z process. The 

transformer is symmetric and has a common mode to differential mode CMRR = 40 dB up 

to 6 GHz. The effect of the differential input signal at the primary, on the ESD node at the 

secondary, is very low. Therefore the accidental triggering of the ESD node does not happen 

for a normal range of input signal and the differential mode of operation. 

The spark gaps have less than 2 fF capacitance to ground at both ports of the primary. 

Their effect on the normal circuit operation is minimal because the capacitance is very small. 

They act as open circuit to normal circuit operation. 

The total capacitance seen by the signal at the secondary of the transformer at each port 

is the sum of the transformer self capacitance 44 fF and the spark gap capacitance of 2 fF. 

This is around 46 fF per pin. If the bonding pad capacitance of 25 fF is included the total 

capacitance in the signal path is less than 71 fF. 

The bonding pads are fabricated using only the highest metal layers to reduce self capac­

itance to ground. If the bonding pads are excluded, the structure in [53] has 150 fF, and the 

structure in [25] has 90 fF. The proposed structure in this research has about 46 fF while 

providing physical isolation of the signal from the outside world. The ESD structure in this 

research can be large and yet fast enough to withstand high current and fast triggering. The 

voltage protection level can be high. 
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7.7.2 ESD mode of operation 

If any secondary port of the transformer is subjected to an ESD event, then there are three 

different paths for the current to flow through thus avoiding being transferred to the primary 

of the driver and thus to internal circuitry. The paths are: 

1. Through the spark gap of the port closer to the ESD event, and to a lesser extent, the 

spark gap connected to the other port of the secondary. In that case, the current has to 

pass through the secondary windings of both transformers. 

2. Through the ESD structure in the middle between the two transformers. Note that the 

middle point is not anymore a balanced point since the ESD event is occurring at only 

one port. 

3. Through the secondary windings of both transformers to the other port of the trans­

former, and off the chip. 

The turn-on time for the ESD device depends on how fast the device turns on. A typical 

turn-on time is on the order of 250 ps. The spark gap initiation time is about 10 ps. The time 

elapsed for the current signal to travel through the secondary windings of both transformers 

is about 40 ps. This time can be calculated assuming the transformer acts as a transmission 

line , in addition to the time delay caused by the ohmic resistance of the transformer windings, 

20(1 and the transformer parasitic capacitances around 100 fF. 

The HBM ESD event takes about 150 ns, with a rise time on the order of 10 ns. The spark 

gap initiates first. The current passes through the secondary windings and discharges through 

the other pad. When the current reaches the center ESD structure, the device turns on after 

about 250 ps. In essence, there are three paths for current discharge. 

The transformer lower cutoff frequency is about 1-2 GHz. This happens to be beneficial in 

the case of an ESD event. The frequency spectrum of an HBM test signal is well below 1GHz. 

The transformer provides isolation and very small induced voltage is seen at the primary as a 

result of the ESD event at the secondary. 
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As for the CDM test signal, the frequency spectrum is around 1-2 GHz. The CDM event 

transient lasts for several 10 x 10 9's with a rise time less then 1 ns. If spark gaps or center 

ESD structures are not present, the ESD current in the secondary induces a large voltage in 

the primary that can be damaging to the sensitive transistor drains. This voltage can be much 

larger than the thermal breakdown voltage of the drain to bulk junction, and can easily destroy 

these devices. Consequently, it is important that the spark gaps and the center ESD structures 

turn on fast and effectively discharge the current. The spark gaps in this case turn on after 

around 10 ps, and provides a discharge path for a considerable percentage of the current before 

it reaches the transformer and induces a large voltage in the secondary. 

7.8 ESD simulations 

Two standardized test are performed on the proposed structure. The first is the HBM [59] 

test. The faster and more severe test is the CDM [60] test. The transformers were previously 

fabricated in a typical CMOS 0.18/n process. The four port characterization parameters were 

used in the simulations. 

For each test, two simulation cases were performed. They are: 

1. The transformers alone acting as ESD devices. 

2. The transformers, in addition to the spark gaps and center ESD devices chosen as diodes 

forward biased in the ESD mode of operation. 

7.9 Human Body Model (HBM) Test 

7.9.1 HBM test for an ESD structure without spark gaps 

The HBM simulation setup network consists of a 100 pF capacitor, a 15 uH inductor, and a 

1500 fi resistor. This test is applied to one of the input pads of the transformer secondary. The 

other input pad of the transformer secondary is left open as in Figure 7.61. A 50 termination 

1The following abbreviations are always associated with figures 

•  L means Left, and R means flight 
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resistor is placed at each transformer primary port. The ESD structure does not have the 

spark gaps included. 

The ESD voltage VESD is displayed in Figure 7.7L. Figure 7.7R is the ESD current 

resulting from the discharge of the ESD capacitor. The current and voltage show a damped 

response due to the large ESD resistance 1500 f2. 

The transformer differential secondary voltage, VseCondary-diff = Vsi — Vs2• Figure 7.8 UL 

raises in a damped response to more than 200 V. The transformer differential primary voltage, 

Vprimary-diff = Vpi — Vp2, Figure 7.8 UR. shows peaks at 1.2 V and -0.7 V. This voltage is 

below the breakdown voltage, 2x4 V, of the NMOS differential pair transistors drains connected 

to it. This shows that the ESD structure provides protection to the internal circuit against 

voltages up to 10 kV. The frequency spectrum of V s e c o n d a r y _ d i f f  ( V s e c 0 n d a r y - d f t )  in Figure 7.8 LL 

shows that the frequency components decrease rapidly after 500 MHz. This is a nature of 

the HBM ESD signal. Due to the low cutoff frequency of the transformer at 1.5 GHz, the 

transformer attenuates the frequency components of the signal below the cutoff frequency. 

The frequency spectrum of Vprimary_diff, ( Vpnmary_([ft ) shows attenuation in its magnitude as 

in Figure 7.8LR. 

Figure 7.9Z/L& UR shows the transformer secondary voltages Vgi, andVg2, respectively. 

The response is damped, and settles down after 800 ns. The transformer primary voltages 

Vp1,andVp2 are displayed in Figure 7.9 ULh LL, respectively. Vpi shows a maximum mag­

nitude of 1.1 V, while Vp2 shows a maximum magnitude of 1 V. The voltage transient lies 

comfortably below the 4V limit for each NMOS transistor connected to each port of the trans­

former primary. 

Figure 7.10 displays the current waveforms of the transformer secondary. Figure 7Ai) UL is 

the ESD current that enters the secondary. The peak current is 5.5 A. Sm;d in Figure 7.10 UR 

is the transformer secondary center point voltage. It rises to 9 V. Because Sm;d > Vdd + V td ioJ<. 

the top secondary diode in Figure 7.6LL is forward biased and conducts most of the ESD 

•  UL means f/pper Left, and UR means C/pper Eight 

• LL means Lower Left, and LR means Lower flight 
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current. The bottom secondary current is off as in Figure 7.6LL. Another indication that 

most of the ESD current is dissipated in the diodes is the transformer T2 secondary current in 

Figure 7.6LR. The magnitude of the current is about 6 mA. This is about 0.1% of the original 

ESD current. 

Figure 7.10 shows the current waveforms of the transformer primary. Pm;d in Figure 7.10 UR 

is the transformer secondary center point voltage. Figure 7.10 to, is the ESD current that enters 

the primary. The negative current means that it is leaving the primary. The peak current is 

—23 mA. Pmj<j in Figure 7.10 UR is the transformer primary center point. It rises to only 1 V 

which is not enough to forward bias any of the primary diodes. There is a transient current in 

the primary top and bottom diodes due to charging and discharging the parasitic capacitances 

associated with the diodes junctions as shown in Figure 7.11 LL. The rest of the current flows 

through the transformer T2 windings as shown in Figure 7.11 LR. 

As a conclusion, the ESD structure is able to protect the circuit against an HBM ESD 

event up to 10 kV. It should be noted that simulation shows that there is enough room to 

protect the circuit up to a higher voltage. 
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Figure 7.6 HBM without spark gaps: Schematic 
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Figure 7.7 HBM without spark gaps: ESD current and voltage 
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Figure 7.8 HBM without spark gaps: Sec. and Pri. voltages 
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Figure 7.9 HBM without spark gaps: Transformer voltages 
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Figure 7.10 HBM without spark gaps: Transformer secondary currents 
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Figure 7.11 HBM without spark gaps: Transformer primary currents 
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7.9.2 HBM test for an ESD structure with spark gaps 

The HBM simulation setup network consists of a 100 pF capacitor, a 15 uH inductor, a 

spark gap at each transformer secondary port, and a 1500Q resistor. This test is applied to 

one of the input pads of the transformer secondary. The other input pad of the transformer 

secondary is left open as in Figure 7.12. A 50 termination resistor is placed at each transformer 

primary port. 

The ESD voltage Vslis displayed in Figure 7.13L. Figure 7.13R, shows the ESD current 

resulting from the discharge of the ESD capacitor. The current and voltage show a damped 

response due to the large ESD resistance 15000. 

The transformer differential secondary voltage, Vsec0ndary_diff = Vsi - Vgg, Figure 7.14UL, 

raises in a damped response to around 3 V. The transformer differential primary voltage, 

Vprimary_diff = Vpi - Vp2, Figure 7.14 UR, shows peaks at 80 mV and —10 mV. This voltage 

is well below the breakdown voltage, 2 x 4 V, of the NMOS differential pair transistors drains 

connected to it. This shows that the ESD structure provides protection to the internal circuit 

against voltages, at least, up to 10 kV. The frequency spectrum of Vsecondary_diff, VseCondary-dft 

in Figure 7.14LL, shows that the frequency components decrease rapidly after 500 MHz. The 

frequency spectrum of Vprimary_diff, (Vprimary_dft) shows attenuation in its magnitude as in 

Figure 7.14 LR. 

Figure 7.15 ULk. UR shows the transformer secondary voltages Vgi, and Vg2, respectively. 

The response is damped, and settles down after 800 ns. The transformer primary voltages 

Vpi, and Vp2 are displayed in Figure 7.15 UL, & LL, respectively. Vpi shows a maximum 

magnitude of 90 mV, while Vp2 shows a maximum magnitude of 50 mV. The voltage transient 

lies comfortably below the 4V limit for each NMOS transistor connected to each port of the 

transformer primary. 

Figure 7.16 displays the current waveforms of the transformer secondary. Figure 7.16 UL is 

the ESD current that enters the secondary. The peak current is 33 mA. Smjd  in Figure 7.16 UR 

is the transformer secondary center point voltage. It rises to 1.5 V. Because Sm;d < VM + Vtdiodc, 

the top secondary diode in Figure 7.16LL continues to be in the OFF state. The situation 
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is the same for the secondary bottom diode which becomes biased and conducts most of the 

ESD current. The bottom secondary current is off as in Figure 7.16LL. There is a transient 

current in the primary top and bottom diodes due to charging and discharging the parasitic 

capacitances associated with the diode junctions. Almost all of the ESD current flows through 

the transformer T2 secondary windings as shown in Figure 7.16L.fi. 

Figure 7.17 shows the current waveforms of the transformer primary. Pmid in Figure 7.17 UR 

is the transformer secondary center point voltage. Figure 7.17 UL is the ESD current that 

enters the primary. The negative current means that it is leaving the primary. The peak 

current is —1.7 mA. Pmjd in Figure 7.17 UR is the transformer primary center point. It rises to 

only 120 mV which is not enough to forward bias any of the primary diodes. There is a transient 

current, around 2 mA in the primary top and bottom diodes due to charging and discharging 

the parasitic capacitances associated with the diode junctions as shown in Figure 7.17LL. The 

rest of the current flows through the transformer T2 windings as shown in Figure 7.17LR. 

As a conclusion, the ESD structure was able to protect the circuit against an HBM ESD 

event up to 10 kV. It should be noted that simulation shows that there is enough room to 

protect the circuit up to a higher voltage. 
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Figure 7.12 HBM with spark gaps: Schematic 
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Figure 7.13 HBM with spark gaps: ESD current and voltage 
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Figure 7.14 HBM with spark gaps: Sec. and pri. voltages 
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Figure 7.15 HBM with spark gaps: Transformer voltages 
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Figure 7.16 HBM with spark gaps: Transformer secondary currents 
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Figure 7.17 HBM with spark gaps: Transformer primary currents 
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7.10 Charged Device Model (CDM) test 

7.10.1 CDM test for an ESD structure without spark gaps 

The CDM simulation setup network consists of a 6.8 pF capacitor, a 100 nH inductor, and 

a lf2 resistor. This test is applied to one of the input pads of the transformer secondary. The 

other input pad of the transformer secondary is left open as in Figure 7.18. A 50 termination 

resistor is placed at each transformer primary port. The ESD structure does not have the 

spark gaps included. 

The ESD voltage Vsi, is displayed in Figure 7.19L. Figure 7.19R is the ESD current result­

ing from the discharge of the ESD capacitor. The current and voltage show an underdamped 

response due to the small ESD resistance If]. It peaks at 1.5 A, and —0.7 A. 

The transformer differential secondary voltage, Vsecondary <jjff = Vgi - Vg2, Figure 7.20 UL, 

( Figure 7.21 L), rises in an underdamped response to 70 V. The transformer differential primary 

voltage, Vprimary_diff = Vpi - Vp2, Figure 7.20 UR, ( Figure 7.21 R), shows peaks at 4.2 V and 

—2.5 V. This voltage is below the breakdown voltage, 2x4 V, of the combined NMOS transistors 

drains connected to it. This shows that the ESD structure provides protection to the internal 

circuit against voltages up to 250 V. The frequency spectrum of Vsec0ndary_diff, (Vsecondary_dft) 

in Figure 7.20 LL, shows that the frequency components are large in magnitude. This is a 

nature of the CDM ESD signal which has more frequency components at higher frequencies 

than the HBM case. It has less frequency components at lower frequencies. For example, it 

has a frequency component of around IV at 1 GHz. The frequency spectrum of Vprimary_diffi 

Vprimary_dft shows less attenuation in its magnitude as in Figure 7.20LR It is noted that 

frequency components are shifted to a higher frequency band than in the HBM case. It has 

a frequency component of 150 mV at 1GHz. This is considerably higher than 25 mV in the 

HBM 10 kV case. 

Figure 7.22 UR, & LR, ( Figure 7.2.3 UR, & LR) shows the transformer secondary voltages 

Vsi,andVg2, respectively. The response is underdamped, and settles down after 15 ns. The 

change in voltage in V$2 is due to the turn on and off of the transformer secondary diodes. 
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The transformer primary voltages Vpi,andVp2 are displayed in Figure 7.22UL, & LL, ( Fig­

ure 7.23 UL, & LL) respectively. Vpi shows maximum magnitude of 3.9 V, while Vp2 shows 

a maximum magnitude of 1.1 V. The voltage transient lies just below the 4V limit for each 

NMOS transistor connected to each port of the transformer primary. 

Figure 7.24 displays the current waveforms of the transformer secondary. Figure 7.24UL, 

( Figure 7.25 UL) is the ESD current that enters the secondary. The peak current is 1.5 A. 

Smid in Figure 7.24 UR, ( Figure 7.25 UR) is the transformer secondary center point voltage. 

It rises to 3.2 V. Because Smjd > Vdd + Vtdloie, the top secondary diode in Figure 7.25LLis 

forward biased and conducts most of the ESD current. The bottom secondary current is off 

as in Figure 7.25LL. When Sm;d drops to —2 V at t = 4 ns, the top secondary diode in 

Figure 7.25LLis reverse biased and conducts no ESD current. The bottom secondary current 

is on and conducts most of the current as in Figure 7.25-LLuntill t = 6 ns. Another indication 

that most of the ESD current is dissipated in the diodes is the transformer T2 secondary 

current in Figure 7.25LR. The magnitude of the current peak is less than 15 mA. This is about 

1% of the original ESD current. 

Figure 7.26 shows the current waveforms of the transformer primary. Figure 7.26 UL, ( 

Figure 7.27 UL) is the ESD current that enters the primary. The negative current means that 

it is leaving the primary. The peak current is —75 mA. Pmid in Figure 7.26 UR( Figure 7.27 UR) 

is the transformer primary center point. It rises to only 2 V which is not enough to forward 

bias the top primary diodes. There is a transient current in the primary top and bottom 

diodes due to charging and discharging the parasitic capacitances associated with the diodes 

junctions as shown in Figure 7.26LL, ( Figure 7.27LL). Most of the current flows through the 

transformer T2 windings as shown in Figure 7.26LR, ( Figure 7.27LR). 

As a conclusion, the ESD structure was able to protect the circuit against an CDM ESD 

event up to only 250 V. In many cases, this amount of protection is not adequate for typical 

ESD events. Deployment of spark gaps is necessary to improve the ESD protection level. 
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Figure 7.18 CDM without spark gaps: Schematic 
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Figure 7.19 CDM without spark gaps: ESD current and voltage 



www.manaraa.com

125 

ESD_CDM_diodes_only Primary/Secondary Voltages 
VS1-VS2 Voltage J VP1-VP2 Voltage 

5.0 ^pnrrQ-y.cIff 

3.0 5.0n 
> < = ) 

V5T-VS2 Frequency "Spectrum " 

Vsecordcry d't 

V 
15n 20n 5.0n 10n 

tine ( s 

VP1-VP2 Frequency Spectrum '  

0.0 500M 1.0C 1.5C 2.0C 500M \0C 1.5C 2.0C 

Figure 7.20 CDM without spark gaps: Sec. and pri. voltages 
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Figure 7.21 CDM without spark gaps: Sec. and pri. voltages (zoom) 
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Figure 7.22 CDM without spark gaps: Transformer voltages 
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Figure 7.23 CDM without spark gaps: Transformer voltages (zoom) 
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Figure 7.24 CDM without spark gaps: Transformer secondary currents 
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Figure 7.25 CDM without spark gaps: Transformer secondary currents 

(zoom) 
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Figure 7.26 CDM without spark gaps: Transformer primary currents 
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Figure 7.27 CDM without spark gaps: Transformer primary currents 
(zoom) 
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7.10.2 CDM test for an ESD structure with spark gaps 

The CDM simulation setup network consists of a 6.8 pF capacitor, a 100 nH inductor, a 

spark gap at each transformer secondary port, and a lf2 resistor. This test is applied to one of 

the input pads to the transformer secondary. The other input pad of the transformer secondary 

is left open as in Figure 7.28. A 50 termination resistor is placed at each transformer primary 

port. 

The ESD voltage Vslis displayed in Figure 7.29, L. Figure 7.29R, shows the ESD current 

resulting from the discharge of the ESD capacitor. The current and voltage show an under-

damped response due to the small ESD resistance 1 f2. It peaks at 24 A, and —21 A. 

The transformer differential secondary voltage, Vsecondary_diff = Vsi — Vg2, Figure 7.30UL,( 

Figure 7.31L), rises in an underdamped response to 19 V. The transformer differential primary 

voltage, Vprimary_diff = Vpi - Vp2, Figure 7.30 UR, ( Figure 7.31/2), peak at 4.0 V and -0.9 

V. This voltage is below the breakdown voltage, 2 x 4 V, of the combined NMOS transistors 

drains connected to it. This shows that the ESD structure provides protection to the internal 

circuit against voltages up to 3k V. The frequency spectrum of VseCondary_diff, Vsec0ndary_dft 

in Figure 7.30LL, shows that the frequency components are large in magnitude. This is a 

nature of the CDM ESD signal which has comparable frequency components to the CDM case 

without spark gaps. For example, it has a frequency component of around IV at 1 GHz. The 

frequency spectrum of Vprimary_diff, Vpr;mary_dft shows a peak of 0.8 V in its magnitude as in 

Figure 7.30LR. It has a frequency component of 150 mV at 1 GHz. This is close to the 150 

mV in the CDM 250 V case. 

Figure 7.32 URk. LR, ( Figure 7.33 UR& LR) show the transformer secondary voltages 

Vsi,andVs2, respectively. The response is underdamped, and settles down after 40 ns. The 

change in voltage in Vgg is due to the turn on and off of the transformer secondary diodes. 

The transformer primary voltages Vpi,andVp2 are displayed in Figure 7.32ULk, LL, ( Fig­

ure 7.33 ULh LL) respectively. Vpi shows a maximum magnitude of 3.9 V, while Vp2 shows 

a maximum magnitude of 0.7 V. The voltage transient lies just below the 4V limit for each 

NMOS transistor connected to each port of the transformer primary. 
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Figure 7.34 displays the current waveforms of the transformer secondary. Figure 7.34 UL, 

(Figure 7.35 UL) gives the BSD current that enters the secondary. The peak current is 0.35 

A. Smid in Figure 7.34 UR. (Figure 7.35 UR) is the transformer secondary center point voltage. 

It rises to 3.2 V. Because Smjd > V,id + V tdiode, the top secondary diode in Figure 7.MLL\s 

forward biased and conducts most of the ESD current. The bottom secondary current is off 

as in Figure 7.34LL. When SmK[ drops to —1.6 V at t = 2,7.5 ns, the top secondary diode in 

Figure 7.34.Litis reverse biased and conducts no ESD current. The bottom secondary current is 

on and conducts most of the current as in Figure 7.34LZ/till t = 4.5,10 ns. Another indication 

that a considerable part of the ESD current is dissipated in the diodes is the transformer T2 

secondary current in Figure 7.34LR, ( Figure 7.35LR). The magnitude of the current peak is 

less than 70 mA. This is about 20% of the original ESD current. The rest is dissipated in the 

diodes. 

Figure 7.36 shows the current waveforms of the transformer primary. Figure 7.36 UL, ( 

Figure 7.37 UL) is the ESD current that enters the primary. The negative current means that 

it is leaving the primary. The peak current is —75 mA. Pm;a in Figure 7.36UR, ( Figure 7.37 UR) 

is the transformer primary center point. It rises to less than 1 V which is not enough to forward 

bias the top primary diodes. There is a transient current in the primary top and bottom diodes 

due to charging and discharging the parasitic capacitances associated with the diodes junctions 

as shown in Figure 7.36LL( Figure 7.37LL). Most of the current flows through the transformer 

T2 windings as shown in Figure 7.36LR, ( Figure 7.37LR). 
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Figure 7.28 CDM with spark gaps: Schematic 
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Figure 7.29 CDM with spark gaps: ESD current and voltage 
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Figure 7.30 CDM with spark gaps: Sec. and pri. voltages 
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Figure 7.31 CDM with spark gaps: Sec. and pri. voltages (zoom) 
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Figure 7.32 CDM with spark gaps: Transformer voltages 
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Figure 7.33 CDM with spark gaps: Transformer voltages (zoom) 
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Figure 7.34 CDM with spark gaps: Transformer secondary currents 
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Figure 7.35 CDM with spark gaps: Transformer secondary currents (zoom) 
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Figure 7.36 CDM with spark gaps: Transformer primary currents 
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Figure 7.37 CDM with spark gaps: Transformer primary currents (zoom) 
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7.11 Contribution summary 

The contribution represented by this chapter is a design of an RF and Gbit/s ESD structure 

using monolithic transformers and on-chip spark gaps. The design shows a protection level up 

to 10 kV for the HBM case, and 3 kV in the CDM case. The bandwidth of the device is from 

1.5-6 GHz. A comparison of the results of the proposed ESD structure to existing state of 

the art RF ESD protection methods is presented in Table 7.1. The proposed methods prove, 

through simulations, to be competitive to other ESD protection methods. 

Table 7.1 ESD Protection Methods: Comparison of results 

Protection Method C t o t  (fF) (No pads) HBM (Volts) CDM (Volts) 

NO ESD 0 
~ 1000 

4 

2k-4k 

2k 

4k 

4 

2k-4k 

N/A 

N/A 

Low Speed Methods 

[53] 

[25] 

150 

90 

Proposed(w/o spark gaps) 

Proposed(w spark gaps) 

44 

46 

10k 

10k 

250 
3k 



www.manaraa.com

137 

CHAPTER 8. Driver design and encoding schemes 

8.1 Introduction 

In this chapter two driver-encoding schemes are discussed. The first one is a DC balancing 

scheme to guarantee that the average signal on the line at any point in time is substantially 

zero. In this way, the DC value of the signal on the line is stabilized. The second encoding 

scheme focuses the energy content of the signal around one frequency so that the driver can 

be terminated easily with termination resistors. 

8.2 DC balancing encoding 

This encoding scheme gives the signaling scheme several features: 

1. It provides DC balancing of the signal on the line. 

2. It provides easier clock recovery for the signal at the receiver. Therefore no clock signal 

needs to be sent to the receiver on a separate line. This will give maximum efficiency of 

the pin number utilization. 

3. It provides error detection of the transmitted signal at the receiver. This is because after 

every predetermined number of bits is sent, the average of the signal on the line is zero. 

Figure 8.1 illustrates the encoder block diagram. As an example, the data enters a 5 to 1 

multiplexer over 4 buses according to 5 phases of the clock. The fifth bus is a control signal. 

There's no fifth data bus. According to the clock, the multiplexer chooses, according to the 

clock phase, one of the buses one at a time. The chosen data bus MI-MO then enters the 

thermometer encoder. At f4, there is no data that enters the thermometer encoder. The table 
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Figure 8.1 DC balancing encoder 

in Figure 8.1 shows the relation between the input and output of the thermometer encoder. 

At no point in time is the output of the thermometer encoder completely zero in all of its 

outputs. The output of the thermometer encoder enters the driver. The voltage levels of the 

driver input are as follows. A high voltage is high enough to let the corresponding transistor 

enter its saturation region. A low voltage lets the transistor shut off. As can be seen, the 

driver acts as a voltage to a current converter. The output is a multilevel current signal that 

is sent to the transformer. The transformer then differentiates that current into an induced 

voltage at the secondary to be sent to the line. This is illustrated in Figure 8.1. 

8.3 4to5 bus encoding 

This encoding scheme takes place before the multiplexer. Each bit from each bus is encoded 

such that there is a maximum number of transitions from one bus word to another bus word. 

This logical block contributes to the termination scheme such that it's easier to use a simple 

termination resistor at the driver. This encoding scheme focuses the signal frequency content 

around a certain frequency. 

Table 8.1 shows an analysis of the number of transitions in 4 bit words. As an example a 

1111 or 0000 have 0 number of transitions. 
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Figure 8.2 Waveforms at the transformer primary and secondary 

Table 8.1 Analysis of transition in 4 bit words 

no. of trans. Cases for 4 bit word no. of trans. For 4 bit word before encoding 

2 0 

6 1 

6 2 

2 3 

Table 8.2 shows the number of transitions is narrowed down from a wide spectrum of 0 to 

3 transitions to 2 to 3 transitions. With the addition of the DC balancing code, the number 

of transitions is increased by 1. Equation 8.1 shows the encoding function used. 

Ai = Aj (8.1) 

Bi = Bj (8.2) 

C( = DjCj + AjCj + AjBjCj + AjBjDj (8.3) 

1) j  — C jDj  + BjDj  + AjDj  '  B jCjDj  (8.4) 

Ei = CjDj + AjDjBj + DjAjBj (8.5) 
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Table 8.2 Analysis of transitions after adding one extra bit to word 

no. of trans. Cases for 5 bit word no. of trans, after encoding Trans, with DC balance 

12 2 3 

4 3 4 

(8.6) 

8.4 Driver matching 

The driver has to be matched, at the transformer, to the line. Since the transformer acts 

as a high pass filter, the transformer has to be matched to the line from the cutoff frequency 

(2GHz) to around 5 GHz. The matching problem can be solved using a lossless matching 

network composed of capacitors and inductors between the driver and the PCB line. Another 

method is to use a resistive matching network. The problem with it is the high loss that occurs 

at the driver. 

8.5 Driver architecture 

8.5.1 Current mode driver 

In the Current Model Driver, the driver is directly connected to the bonding wire. The 

ESD devices are connected to the signal nodes at the drivers as in Figure 8.3. The benchmark 

used in this test is the maximum clock sent from the driver to the receiver. Simulation results 

in HSPICE, in 0.18u CMOS process, show that it can pass a maximum clock of 1.14 GHz. 

For a differential signal swing of 200 mV at the receiver, the maximum bit rate sent from the 

driver to the receiver is 2.28 Gbit/s as in Figure 8.4. 

8.5.2 Transformers in driver structure 

The driver is composed of a differential pair with the transformers connected to the drains 

of the differential pair. The loads can be plain resistors or transistors in the triode region as 

shown in Figure 8.5. The driver uses current mode signal to pass to the transformer. The 
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Figure 8.3 Current Mode Driver 

driver rise time is controlled by the use of several transistors with their drains and sources 

connected together but the gates are connected in series through a set of resistors [14]. The 

transformer model is shown in Figure 8.6. 

In Figure 8.7, the driver is shown in addition to the PCB MSL and receiver front end. 

The driver has rise time control. The receiver has a pair of transformers that work as ESD 

structures and as part of the receiver front end. 

This structure has an advantage over the previous structure in that the current consumption 

is less. The reason is that in Figure 8.5 the current has to pass through the parallel combination 

of the termination resistors and the transformers pair. This happens when the differential pair 

switch current between its sides. On the other hand, the structure in 8.7 has the whole current 

in the driver transistors passing in the transformer, and not a part of it as in 8.5. It is noted that 

the differential pair transistors need not shut off completely when the current in transferred 

between its sides. 
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Figure 8.4 Current mode driver maximum bit rate 

8.5.3 Transformer isolation scheme simulation 

In the Transformer Isolation Scheme (TIS), the transformers are connected to the driver 

and at the receiver as in Figure 8.8. ESD devices are present in the driver an at the receiver. 

The length of the GML PCB trace is 5 inches. Simulation is made in HSPICE for 0.18u CMOS 

process. For a differential signal swing of 200 mV at the receiver, the maximum bit rate sent 

from the driver to the receiver is 10.6 Gbit/s as shown in Figure 8.9. The minimum bit rate is 

3.8 Gbit/s as in Figure 8.10. 



www.manaraa.com

143 

Figure 8.5 Schematic of the driver of the high speed serializer 
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Figure 8.6 Transformer model in the driver 
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Figure 8.9 Transformer Isolation Scheme Figure 8.10 Transformer Isolation Scheme 
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CHAPTER 9. Contribution summary 

In this project several contributions were made. The following sections summarize them. 

9.1 Geometric scaling 

A method of characterization of RF inductors by geometric scaling was presented. The 

geometries of on chip passive RF components are scaled up by a factor a. The scaled model 

is characterized at a scaled down frequency range by a factor 1 /a. The scattering parameters 

extracted from two geometrically scaled-up model at the scaled-down frequency range showed 

good agreement with the original on-chip inductors at the original desired frequency range. 

Extra parasitic capacitances that do not have any equivalence on-chip, reduced the effective 

inductance. The models gave also a lower bound for Qmax and fqmax as compared to on-

chip characterization results. This method can be utilized to give a prediction for RF spiral 

inductors before fabrication. While the equations given in Table 2.1 are primarily for lumped 

circuit elements, the same scale factor applies to distributed circuits, and work with distributed 

circuits will continue. 

9.2 Transformer design and characterization in 0.18// CMOS process 

The contribution is the analysis, design, fabrication and characterization of monolithic 

RF transformers in 0.18/xm CMOS process. Analysis is provided for 4 port ideal transform­

ers. Several transformer structures were discussed such as planar interleaved transformers 

and proposed layout changes that have the potential for increasing the transformer coupling 

bandwidth. A ring transformer structure is introduced that allows less loss to be induced in 

the substrate. A software interface was developed for MATLAB, to help in designing a trans-
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former in ASITIC. Recalibration and decoupling methods are presented too. Characterization 

results of the RF transformers agree with the design objective presented in this chapter. The 

resonance frequencies of 6 GHz for the transformers designed are higher than the bandwidth 

required 5 GHz, 

9.3 Bandwidth improvement of toroidal transformers 

Analysis of monolithic integrated transformers is presented. Several toroidal transformers 

were fabricated in 0.18/u CMOS process. Characterization results show a resonance frequency 

above 5GHz for the toroidal transformers with |Sis| > 0.3. 

Other structures are developed where the parasitic capacitances, self or coupling, are min­

imized to maximize the resonance frequency of the transformer and improve its performance 

parameters. This structure depends on the concept of eliminating the overlap of top-bottom 

metal layers, and maximize the horizontal distance between the windings in the same layer to 

minimize the parasitic capacitances. The structures are intended to be fabricated in a custom 

ISU 2/i process. 

9.4 Microstrip line modelling 

A brief comparison study of GML1000 and FR4 materials for PCB circuits was provided. 

In this chapter it is proposed that GML1000 material be used over FR4 material for high 

speed circuits. This is due to the higher performance characteristics of the GML1000 material 

such as a stable er over a larger frequency range, low loss factor, cost and compatibility with 

standard manufacturing process. 

9.5 Bonding wire modelling toolbox in HSPICE and MATLAB 

A bondwire modelling toolbox was developed for the case of Chip on Board assembly. The 

toolbox produces a circuit model that can be used in HSPICE simulation. The analysis shows 

that the level of impedance discontinuities in the BW decreases if the BW does not change the 
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height along its path from the PCB to the chip. If the BW is flat (ribbon) then the impedance 

variations can be greatly reduced. 

9.6 RF and Gbit/s electrostatic discharge protection design 

The contribution is a design of an RF and Gbit/s ESD structure using monolithic trans­

formers and on-chip spark gaps. The design shows a protection level up to 10 kV for the HBM 

case, and 3 kV in the CDM case. The bandwidth of the device is from 1.5-6 GHz. A compari­

son of the results of the proposed ESD structure to existing state of the art RF ESD protection 

methods is presented in Table 7.1. The proposed methods prove, through simulations, to be 

competitive with other ESD protection methods. 

9.7 Driver design and encoding scheme 

In this chapter two encoding schemes for the driver are given for multilevel signaling. The 

first encoding scheme multiplexes the signal at the driver. The second scheme limits the 

number of variations in the outgoing signal. Several driver and receiver schemes are provided 

as schematic. The benchmark tests show that the driver can reach up to 10.6Gbit/s with a 

minimum bit rate of 3.8Gbit/s. 
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APPENDIX A. Planar transformer code 

A.l sweepl.m 

% Copyright © 2002 
% Nader Badr 
% All Rights Reserved 

% This file will get the optimal coupling inductance 

tl=clock: 

len_min= ; 
gap_min= ; 
w_min= ; 

s.min- ; 

nl_min= ; 
n2_min= ; 
freq_min= 
off_x= ; 

len_step= 

gap_step= 
w_step= ; 
s_step= ; 
nl_step= ; 
n2_step= ; 
freq_step= 
off_y= ; 

len_max= ; 

gap_max= ; 
w_max= ; 
s„max= ; 
nl_max= ; 
n2_max= ; 
freq_max=5; 

mtopl= ; mtop2= wg= 

[st,hostname]=unix('hostname5); 

len_n=ceil((len_max-len_min)/len_step)+l; 
w_n=ceil((w_max-w_min)/w.step)+1; 
s_nsceil((s„max-s_min)/s_step)+1; 
nl_n=ceil((nl_max-nl_min)/nl_step)+l; 
n2_n=ceil((n2_max-n2_min)/n2_step)+l; 
gap_n=ceil((gap_max-gap_min)/gap„step)+l; 

Xlenx =x(l); 
7.WX =x(2) ; 

Xsx =x(3); 
addpath /constr 

flagl=l; 

tl=clock; number_of_points„left=len_n*w_n*s_n*nl_n<tn2_n*gap_n; 
elapsed_time=6; elapsed_times=6; k=l; k2=l; 
LENI=1;GAP=1;SI=1;N1I=1;N2I=1; for leni=len„min:len_step:len.max, 

GAP=1; 
for gap=gap_min:gap.step:gap.max, 
WI=1 ; 

for wi=w_min:w.step:w_max, 
SI=1; 

for si=s_min:s.step:s.max, 
N1I=1; 

for nli=nl_min:nl_step:nl_max, 
N2I=1; 
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for n2i=n2_min:n2_step:n2_max, 

if(leni>(40+(4*ceil(nli)*wi+(4*ceil(nli)-2)*si)+2*wi) & 4000>pi* 
(ceil(nli)*leni) 
& 30<pi*(ceil(nli)*leni)), 

disp(' 
,) 

disp(' Start ') 
disp(['Simulation of M6 with NO GND in CM0S18 on 1 hostname ' for 1 

num2str(freq_min) ' GHz']) 
disp(' 

,) 
dispC . ') 
disp(',1) 

tO=clock; 

estimated_time_left=number_of.points_left*mean 
(elapsed_times)/60; 

number.of_points_left=number_of.points_left-l; 
disp(['len='num2str(leni) ' w=' num2str(wi) ' s=' num2str(si) ' nl=' 

num2str(nli) ' n2-' num2str(n2i)]); 
disp(['Time left is approximately ' num2str(ceil(estimâted.time.left)) 
' minutes']) 

disp(['Average simulation time is ' num2str(mean 
(elapsed.times) 
/60) ' minutes']) 

disp(['Number of points left is ' num2str(number.of.points.left)]) 
lens=leni-2*nli*wi-2*(nli-l)*si-2*gap; 
x=[leni wi si nli lens n2i]; 
[Mc,Fc,sl2_m,sl2_p,QL,fc_est]=tr_no_gnd_eval(x,off_x,off_y,mtop2,wg, 
freq_min,freq_step,freq_max); 

all_len(k2,2) =leni; 
all_w(k2,2) =wi ; 

all_s(k2,2) =si ; 

all.nl(k2,2) =nli 

all„n2(k2,2) =n2i 

all_Fc(k2,2) =Fc; 

all_Mc(k2,2) =Mc; 

all_sl2.p(k2,2) =s!2_p; 

all_sl2_m(k2,2) =sl2_m; 

all_QL(k2,2) =QL; 

all_f c_est(k2,2) i=fc_est; 

k2=k2+l; 

des_len(k,2) =leni; 

des_w(k,2) =wi; 

des_s(k,2) -si; 
des_n(k,2) =nli; 

des_Fc(k,2) =Fc; 

des_Mc(k,2) =Mc; 

des_sl2_p(k,2) =s!2_p; 

des_sl2_m(k,2) =s!2_m; 
des_QL(k,2) =QL; 
k=k+l; 

elapsed.times(flagl)=etime(clock,tO); 

disp(['Elapsed time for this simulation is ' num2str(ceil 
(etime(clock,tO))) ' seconds']) 
elapsed_time=etime(clock,tO); 
flagl=flagl+1; 

dispO 
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dispC END ') 
disp(['Simulation of M6 with NO GND in CM0S18 on ' hostname ' for ' 
num2str(freq_min) ' GHz ']) 

dispC 
,) 

dispC . ') 
save MMopt 

end 

N1I=N1I+1; 

end 
N2I=N2I+1; 

end 
SI=SI+1; 

end 
WI=WI+1; 

end 
GAP=GAP+1; 

end 
LENI=LENI+1; 

end 

elapsed_time=etime(clock,tl); disp(['Elapsed time for all 
simulations is ' num2str(ceil(etime(clock,tl)/60)) ' 
minutes']) save MMopt 

pdata 

A.2 tr_no_gnd_eval. m 

% Copyright © 2002 
% Nader Badr 
% All Rights Reserved 

function [Lps_c,FER_c,sl2_mag,s12_ph,QL_c,fc_est] = 
tr.no_gnd_eval(x,off_x,off_y,mtop,wg,freq.min,freq.step,freq_max) 
% Sweep of inductor parameters for optimization 

flagl =1; k =1 ; lenx =x(l); leny =x(5); wx =x(2); sx 
=x(3); nx =x(4); ny =x(6); 

fn=l; % number of frequency points 
tO=clock; 

unix('date'); 
[a,b]=unix('rm tr_no_gnd.ip'); 
st=tr_no_gnd(lenx,leny,wx,sx,nx,ny,off_x,off_y,mtop,wg,freq_min, 

freq.step,freq.max); 
[a,b]=unix('cat tr_no_gnd.LOG > tr_no.gnd_tot.LOG'); 
[a,b]=unix('rm tr_no_gnd.LOG'); 
[a,b]=unix('rm sparam.dat'); 
coml='asitic_sun '; 
tekfile='-t CMOSlST.tek 
logfile='-l tr_no_gnd 1 ; 
keyfile='-k tr_no_gnd.ip '; 



www.manaraa.com

152 

disp( ['Simulation of tr.no_gnd in CM0S18T on' unix('hostname' ) ] ) 
disp([,len=,num2str(lenx) ' w=' num2str(wx) ' s=' num2str(sx) ' 
n=' num2str(nx)]); 

*Zunix( [coml tekfile logfile keyfile ] ) ; 
unix([coml tekfile logfile keyfile '-ng'3); 
[Lmat,Cmat,coupling,zin]=get_data('home/nbadr/RESEARCH/ASITIC2/contr/ 

tr_no_gnd.LOG',fn); 

nrows=size(Lmat,1); 

len(k:k+nrows-1,1) =lenx; 

nl(k:k+nrows-l,i) =nx; 

w(k:k+nrows-l,1) =wx; 

s(k:k+nrows-1,1) =sx; 

f(k:k+nrows-1,1) =Lmat( ,D 
QL1(k:k+nrows-1,1) =Lmat( ,2) 
QL2(k:k+nrows-1,1) =Lmat( ,3) 
QLd(k:k+nrows-1,1) =Lmat( ,4) 
L(k:k+nrows-l,1) =Lmat( ,5) 
LR(k:k+nrows-1,1) =Lmat( ,6) 
LCsl(k:k+nrows-l,1) =Lmat( ,7) 
LRs1(k:k+nrows-1,1) -Lmat( ,8) 

LCs2(k:k+nrows-1,1) =Lmat( ,9) 
LRs2(k:k+nrows-1,1) =Lmat( ,10); 
FER(k:k+nrows-1,1) =Lmat( ,11); 

QC1(k:k+nrows-1,1) =Cmat( ,2) 
QC2(k:k+nrows-1,1) =Cmat( ,3) 
QCd(k:k+nrows-1,1) =Cmat( ,4) 
C(k:k+nrows-l,1) =Cmat( ,5) 
CR(k:k+nrows-l,1) =Cmat( ,6) 

CCsl(k:k+nrows-1,1) =Cmat( ,7) 
CRs1(k:k+nrows-1,1) =Cmat( ,8) 
CCs2(k:k+nrows-1,1) =Cmat( ,9) 
CRs2(k:k+nrows-1,1) =Cmat( ,10); 

Lpp(k:k+nrows-1,1) =coupling( ,D 
Rpp(k:k+nrows-1,1) =coupling( ,2) 
Lps(k:k+nrows-1,1) =coupling( ,3) 
Rps(k:k+nrows-1,1) 1 I ,4) 
Lss(k:k+nrows-1,1) 0

 

!
 

1
 

,5) 
Rss(k:k+nrows-1,1) n i î ,6) 
z in_r(k:k+nrows-1,1) =zin(: ,1); 
zin.im(k:k+nrows-1,1) =zin(: ,2); 

k=k+nrows; 
elapsed.times(flagl)=etime(clock,tO); 
*/,disp( ['Elapsed time for this simulation is ' num2str(ceil(etime 

(clock,t0)/60)) ' minutes']) 

elapsed.time-etime(clock,tO); 
flagl=flagl+l; 

save tr.no.gnd.mat 
disp( 'Fix.data ' ) 
[L_c,Lps_c,FER.c,QL_c,fc_est]=fix_data('tr_no_gnd'); 

disp('READ_SPAR ') 
[s!2_mag,s!2_ph]=read_spar('spar am.dat3); 

save tr.no_gnd.mat 
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A.3 tr_no_gnd.m 

% Copyright © 2002 
% Nader Badr 
% All Rights Reserved 

function 
st=tr_no_gnd(lenl,len2,w,s,nl,n2,off_x,off_y,mtop,wg,freq_min,freq.step,freq.max) 

fidl=fopen('tr_no_gnd.ip','w'); 

fprintf(fidl,'# Spiral with flux path transformer Input file to 
ASITIC\n'); fprintf(fidl,'# 2 spirals on top of each other. Return 
path through lower inductor\n'); 
fprintf (fidl, '# Generated on y,s\n' ,datestr(now,-l)) ; 

fprintf(fidl,'# by Nader Badr \n\n\n\n'); fprintf(fidl,'set 
snap_size=.02 \n'); 

% th =theta 
%ri= ; 
%s= ; 

%tw= ; 
%d= ; 

7.seg_i= ; 
%nx= ; 
%ny= ; 
%mbot= ; 
off_x=off_x-lenl/2; 

off_y=off_y-lenl/2; 

%ni= ; 

%mtop= ; 
%wg= ; 

% Inner loop 

fprintf(fidl,'square\npl\n%i\n%6.2f\n%6.2f\n%4.2f\nCM%i\ny\nCM%i\nc\n',lenl,w, 
s,nl,mtop,mtop-1); 
fprintf (fidl, ' square \ns 1 \n*Z i \n*/,6. 2f\n%6. 2f\n%4. 2f \nCM%i\ny\nCM%i\nc\n ', len2,w, 
s,n2,mtop,mtop-1); 

fprintf (fidl, ,wire\ngnd\n5\n5\nCM'/,i\nl\nc\nO\n' ,mtop) ; 

*/,status=gnd(f idl, len.gnd, w, xorg, yorg) ; 

% SIMULATION 

% Inner loop 
% Spacing between rio and roi 
% Width of segments in transformer winding radius 
% Thickness of the metal layer 
% Segment number starts with 1 
% Number of vias in the x direction 
% Number of vias in the y direction 
% Bottom metal layer 
% x offset 
% y offset 
% Number of turns 
% Top metal layer 
% width of ground conductor 

for freq=freq_min:freq.step:freq.max 

fprintf (fidl, '# sim_frequency=*/.4. lf\n' ,freq) ; 

fprintf(fidl,'pic pi si %i gnd \nJ,freq); 
fprintf(fidl,Jk2 %i pi si \n',freq); 

end 

fprintf(fidl,'2porttrans pi si gnd %i %i %i\n',freq_min,freq_max,freq_step); 
fprintf (fidl, 'exit\nO ; 

st=fclose(fidl); 
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A.4 get_data. 

% Copyright © 2002 

% Nader Badr 

% All Rights Reserved 

function [Lmat,Cmat,coupling,zin]=get_data(filename,fn) 

% Open the file for read mode 

% To extract data from it 

fid = fopen(filename,Jr'); 

% Read one line at a time 

sim=l; rov=l; 

f=zeros(fn,l); 

QLl=zeros(fn,1); 

QL2-zeros(fn,1); 

QLd=zeros(fn,1); 

L=zeros(fn,l); 

LR=zeros(fn,1); 

LCsl=zeros(fn,1); 

LRsl=zeros(fn,l); 

LCs2=zeros(fn,1); 

LRs2=zeros(fn,1); 

FER=zeros(fn,1); 

f«zeros(fn,1); 

QCl=zeros(fn,1); 

QC2=zeros(fn,1); 

QCd=zeros(fn,1); 

C=zeros(fn,l); 

CR=zeros(fn,l); 

CCsl=zeros(fn,1); 

CRsl-zeros(fn,1); 

CCs2=zeros(fn,l); 

CRs2=zeros(fn,1); 

Lpp=zeros(fn,1); 

Rpp=zeros(fn,1); 

Lps=zeros(fn,1); 

Rps=zeros(fn,1); 

Lss=zeros(fn,1); 

Rss=zeros(fn,1); 

zin_r=zeros(fn,1); 

zin_ im=zeros(fn,1); 

while feof(fid)==0 

line = fgetl(fid); 

line=[line blanks(2)]; 

ind2x= findstr(line,'Pi Model at f='); 

if(isempty(ind2x)==0 & ind2x "=0), 

linek = fgetl(fid); 

% find the frequency of operation 

% 

ind_Hz=f indstr(1ine,'Hz'); 

ind3x=ind2x+length('Pi Model at f='); 

7, check if the colon is included in the string 

Iine2x=line(ind3x:ind_Hz-2); 

if(line(ind_Hz-l)~=' '), 
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f(row,l)=str2num(line2x)*mulfac(line(ind_Hz-l)); 

else 

f(row,I)=str2num(line2x); 

end 

if (linekd :2) —'C=') , 

% Find the QC factor 

ind4x= findstr(line,'Q ='); 

1ine4x=line(ind4x+4:max(length(1ine))); 

ind_cm=f indstr(line4x,', ' ) ; 

% find QL for port 1 

% 

ql.tmp = str2num(line4x(l:ind.cm(l)-2)); 

% check for multiplication factor 

if(line4x(ind_cm(l)-!)"=' ')» 

QC1(row,1)= mulfac(1ine4x(ind_cm(!)-!))*ql_tmp; 

else 

QCl(row,l)= ql.tmp; 

QLl(row,1)= 0; 

end 

% find Q for port 2 

% 

q2_tmp e str2num(line4x(ind_cm(1)+2:ind_cm(2)-2)); 

if(line4x(ind_cm(2)-1)' 1), 

QC2(row,1)= mnlfac(1ine4x(ind_ cm(2)-l))*q2_tmp; 

else 

QC2(row,l)= q2_tmp; 

QL2(row,l)= 0; 

end 

% find Q differential 

% 

% look for the space before the multiplication factor if any 

ind_dq=findstr(line4x(ind_cm(2)+2:max(length(line4x))),' '); 

qd_tmp = str2num(line4x(ind_cm(2)+2:ind_cm(2)+ind_dq(l))); 

% check if there is a multiplication factor 

lizie4x(ind_an(2)+ind_dq(l)+2) ; 

if(line4x(ind_cm(2)+ind_dq(l)+2)"=' '), 

% There's a multiplication factor 

QCd(row,i)= mulfac(line4x(ind_cm(2)+ind_dq(l)+2))*qd_tmp; 

else 

% No multiplication factor 

QCd(row,1)= qd_tmp; 

QLd(row,l)= 0; 

end 

indC=findstr(linek,'F'); 

C(row,l)=str2num(linek(3:indC-2))*mulfac(linek(indC-1)); 

L(row,1)=0; 

ind_R=f indstr(1inek,'FV ); 

line1=[1ine(ind_R+2:max(length(1inek))) blanks(3)]; 

ind_rf=findstr(linel,' '); 

% Read the third line to get Csl and Rsl 

linek = fgetl(fid); 

ind_Csl=findstr(linek,'F1); 

CCsl(row,1)=str2num(linek(6:ind_Csl-2))*mulfac(linek(ind_Csl-l 

:ind_Csl-l)); 

LCsl(row,l)=0; 

ind_Rsl=findstr(linek,'Rsl®'); 
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linel=[linek(ind_Rsl+4:max(length(linek))) blanks(3)]; 

ind_rf=findstr(linel, ' '); 

if(linel(ind_rf(1)+!)"=' >), 

CRsl(row,l)=str2num(linel(1 :ind_rf(!)-!))*mulf ac(1ine1( 

ind_rf(l)+l:ind_rf(!)+!)); 

LRsl(row,l)=0; 

else 

linexyz=linel(1:ind_rf(1)-1); 

CRsl(row,l)=str2num(linel(1 :ind_rf(!)-!)); 

LRsl(row,l)=0; 

end 

% Read the fourth line to get Cs2 and Rs2 and Resonance Frequency 

linek = fgetl(fid); 

ind_Cs2=findstr(linek,JF'); 

CCs2(row,l)=str2num(linek(6:ind_Cs2-2))*mulfac(linek(ind_Cs2-l: 

ind_Cs2-l)); 

LCs2(row,l)=0; 

ind_Rs2=findstr(linek,'Rs2='); 

linel=linek(ind_Rs2+4:max(length(linek))); 

ind_rf=findstr(linel,' 1); 

end 

flag2=l; 

'/.save testl.mat 

end 

ind2x- findstr(line,'L(pi,pi) = '); 

if(isempty(ind2x)==0 & ind2x ~=0), 

ind„Hz=findstr(line,'H'); 

line2x=line(ll:ind_Hz-2); 

if(line(ind_Hz-l)"=' 1), 

Lpp(row,I)=str2num(line2x)*mulfac(line(ind_Hz-l)); 

else 

Lpp(row,1)=str2num(line2x); 

end 

ind_R=findstr(line,'R(pl,pl) ='); 

1ine1=[line(ind_R+11:max(length(1ine))) blanks(3)]; 

ind_rf=findstr(linel,' '); 

if(linel(ind_rf(1)+1)'), 

Rpp(row,1)=str2num(linel(1:ind_rf(1)-1))*mulfac(linel(ind_rf(1)+1)); 

else 

Rpp(row,l)=str2num(linel(1:ind_rf(1)-1)); 

end 

line = fgetl(fid); 

ind_Hz=findstr(line,'H'); 

line2x-line(ll:ind_Hz-2); 

if(line(ind_Hz-l)"=' '), 

Lps(row,1)=str2num(line2x)*mulfac(line(ind_Hz-l)); 

else 

Lps(row,I)=str2num(line2x); 

end 
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ind_R=findstr(line,'R(pl,sl) = ' ) ; 

linel=[line(ind_R+l1:max(length(line))) blanks(3)]; 

ind_rf=findstr(linel,' 1); 

if(linel(ind_rf(l)+l)~=' '), 

Rps(row,l)=str2num(linel(l:ind_rf(!)-!))*mulfac(linel(ind_rf(1)+1)); 

else 

Rps(row,1)=str2num(line1(1:ind_rf(1)-1)); 

end 

line = fgetl(fid); 

ind_Hz=findstr(line,'H'); 

line2x=line(ll:ind_Hz-2); 

if(line(ind_Hz-l)*=î '), 

Lss(row,1)=str2num(line2x)*mulfac(line(ind_Hz-l)); 

else 

Lss(row,l)=str2num(line2x); 

end 

ind_R=findstr(line,'R(sl,sl) ='); 

linel=[line(ind_R+ll:max(length(line))) blanks(3)3; 

ind_rf=findstr(linel,> '); 

if (linel (ind_rf (1)+1)~=' O, 

Rss(row,l)=str2num(linel(l:ind_rf(l)-l))*mulfac(linel(ind_rf(1)+1)); 

else 

Rss(row,l)=str2num(linel(1 :ind_rf(1)-1)); 

end 

end 

ind2x- findstr(line,>Zin = '); 

if(isempty(ind2x)==0 & ind2x -=0), 

ind2_nan=findstr(line,'nan'); 

if(isempty(ind2_nan)==l 1 ind2_nan ==0), 

ind_im=findstr(line,'+ j5); 

line2x=line(7:ind_im-2); 

if(line(ind_im-l)'), 

zin_r(row,I)=str2num(line2x)*mulfac(line(ind.im-1)); 

else 

zin_r(row,I)=str2num(line2x); 

end 

line2x=deblank(line(ind_im+3:max(size(line)))); 

maxl=max(size(line2x)); 

mulf=line2x(maxl); 

if(isempty(str2num(mulf))==1), 

zin_im(row,I)=str2num(line2x(l:maxl-l))*mulfac(line2x(maxl)); 

else 

zin_im(row,I)=str2num(line2x(l:maxl)); 

end 

flag2=l; 

row=row+l; 

else 

zin_r(row,1)=0; 

zin_im(row,1)=0; 

end 

end 
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end 

Lmat =[f QL1 QL2 QLd L LR LCsl LRsl LCs2 LRs2 FER]; Cmat =[f 

QCl QC2 QCd C CR CCsl CRsl CCs2 CRs2 ]; coupling™[Lpp Rpp Lps Rps 

Lss Rss]; zin =[zin_r zin.im]; 

fclose(fid); 

A.5 f ix.data.m 

% Copyright © 2002 

7. Nader Badr 

% All Rights Reserved 

function [L_c,Lps_c,FER_c,QLl_c,f c.est] = fix_data(filename) 

pl=l; p2=40; nc=50; 

eval(['load ' filename '.mat']) 

len_c 

W-C 

s_c 

n_c 

f.c 

QLl.c 

QL2_c 

QLd.c 

L.c 

LR.c 

LCsl.c 

LRsl_c 

LCs2„c 

LRs2_c 

FER.c 

qci_c 
QC2.c 

QCd_c 

C_c 

CR_c 

CCsl_c 

CRsl_c 

CCs2_c 

CRs2_c 

Lpp.c 

RPP-C 

Lps_c 

Rps_c 

Lss_c 

Rss_c 

zin_r_c 

zin_i_c 

= len ; 
= w ; 
= s ; 

ni ; 

f ; 

= QL1 ; 

= QL2 ; 

= QLd ; 

= L ; 

= LR ; 

=LCsl ; 

=LRsl ; 

=LCs2 ; 

=LRs2 ; 

= FER ; 

- QCl ; 

= QC2 ; 

= QCd ; 

= C ; 

= CR ; 

=CCsl ; 

=CRsl ; 

=CCs2 ; 

=CRs2 ; 

=Lpp ; 

=Rpp ; 

=Lps ; 

=Rps ; 

=Lss ; 

=Rss ; 

=zin_r ; 

=zin_im ; 
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zin.c 

zin.mag.c 

2in_ph_c 

fc.est 

=(zin_r_c +i*zin_i_c ) ; 

=abs(zin_r_c +i*zin„i_c ); 

*(phase((zin_r_c +i*zin_i_c )'))'; 

=l/(2*pi*sqrt(Lps_c*C_c)); 

'/.end 

flag«0; eval(['save ' filename 'a.mat']) 

A.6 read_spar.m 

% Copyright © 2002 

% Nader Badr 

% All Rights Reserved 

function [s!2_mag,sl2_ph]=read_spar(filename) 

% filename is sparam.dat 

7,matlab('load' filename 'a.mat len.c w_c s_c n_c Lpp.c Lps_c Lss_c FER.c QLl_c L_c']) 

% Open the file for read mode 

% To extract data from it 

fid = fopen(filename,'r'); 

% Read one line at a time 

k=l; nb=l; while feof(fid)==0 

line = fgetl(fid); 

line=[line blanks(2)]; 

ind2x= findstr(line,># HZ S MA'); 

if(isempty(ind2x)==0 & ind2x ~=0), 

for n=l:nb, 

line = fgetl(fid); 

mall(k,:) =str2num(line); 

k=k+l; 

end 

end 

end 

freq( 1,1) =mall(l,l)*le-9; 

sll_mag(l,l) =mall(l,2); 

sll_ph( 1,1) =mall(l,3); 

sl2_mag(l,l) =mall(l,4); 

sl2_ph(l,l) =mall(l,5); 

if(sl2_ph==nan), 

sl2„ph(l,l)=-l; 

end 

s21_mag(l,1) =mall(l,6) 

s21_ph( 1,1) =mall(1,7) 

s22_mag(1,1) =mall(1,8) 

s22_ph( 1,1) =mall(l,9) 

fclose(fid); 
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A.7 pdata.m 

% Copyright © 2002 

% Nader Badr 

% All Rights Reserved 

load MMopt Mcl=l.3e-9; fres=15e9; Qth=.1 ; 

disp('====================================—CASE1= 

') disp('index all_l all_w all.s all.nl all_n2 all_Fc 

all_Mc all_QL all_sl2_m all_sl2_p all.fc.est1) 

format short e for kk=l:size(all_w,1) 

if(all_Mc(kk,2)>Mcl), 

dispC[num2str(kk) ' ' num2str(all_len(kk,2)) ' * num2str 

(all_w(kk,2)) » »... 

num2str(all_s(kk,2)) ' ' num2str(all_nl(kk,2)) ' ' num2str( 

all_n2(kk,2)) 1 ' ... 

num2str(all_Fc(kk,2)) ' ' num2str(all_Mc(kk,2)) ' ' ... 

num2str(all_QL(kk,2)) ' ' 

num2str(all_sl2_m(kk,2)) ' ' num2str(all_sl2_p(kk,2)) 1 ' 

num2str(all_f c_est(kk,2) , ' */,0. 5g ' ) ] ) 

end 

end 

dispC =============:=====»===================CASE2= 

') dispCindex all_l all_w all_s all.n all.Fc all_Mc 

all_QL all_sl2_m all_sl2_p ') for kk=l:size(all_w,1) 

if(all_Mc(kk,2)>Mcl & all_Fc(kk,2)>fres & all_QL(kk,2)>Qth), % & all.s 

(kk,2)>3 ), 

disp( [num2str(kk) > ' num2str(all_len(kk,2)) ' ' num2str(all_u 

(kk,2)) ' '... 

num2str(all_s(kk,2)) ' ' num2str(all_n(kk,2)) ' ' ... 

num2str(all_Fc(kk,2)) ' ' num2str(all_Mc(kk,2)) ' ' ... 

num2str(all_QL(kk,2)) ' ' ... 

num2str(all_sl2_m(kk,2)) ' ' num2str(all_sl2_p(kk,2)) ' ' 

num2str(all_fc_est (kk,2) , '7,0.5g' )] ) 

end 

end 
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APPENDIX B. Toroidal transformer code 

B.l solenSx.m 

% Copyright © 2002 

% Nader Badr 

% All Rights Reserved 

fidl=fopen(['s5.inp'],'w'); 

fprintf(fidl,'# Toroidal Solenoid transformer Input file to 

ASITICXnO; 

fprintf(fidl,'# Generated on %s\n',datestr(now,-l)); 

fprintf(fidl,'# by Nader Badr \n\n\n\n'); 

% th =theta 

N= ; % N= number of vertical loops in the toroid 

rax= ; % Inner radius of toroid from inner edge of winding 

rbx= ; % Outer radius of toroid from outer edge of winding 

tw= ; % width of segments in transformer winding 

d= ; % thickness of the metal layer 

seg_i= ; % segment number starts with 1 

nx= ; % number of vias in the x direction 

ny= ; % number of vias in the y direction 

mtop= ; % Top metal layer 

mbot= ; % Bottom metal layer 

via= ; % via 

off_x= ; % x offset 

o i f _ y -  ; % y offset 

for th=2*pi/N:2*pi/N:2*pi 

thla=th; 

th2a=th+pi/N; 

ra=rax+tw/2; 

rb=rbx-tw/2; 

ssina=(rbx*sin(th2a)-rax*sin(thla)); 

scosa=(rbx»cos(th2a)-rax*cos(thla)); 

if(ssina>=0 & scosa>=0) 

thmla=atan(ssina/scosa); 

elseif(ssina>=0 & scosa<=0) 

thmla=pi+atan(ssina/scosa); 

elseif(ssina<=0 & scosa<=0) 

thmla=pi+atan(ssina/scosa); 

elseif(ssina<=0 & scosa>=0) 

thmla=2*pi+atan(ssina/scosa); 

end 

cmxa=(rbx*cos(th2a)+rax*cos(thla))/2; % center of wire x value 

cmya=(rbx*sin(th2a)+rax*sin(thla))/2; % center of wire y value 

lena=sqrt((rbx*sin(th2a)-rax*sin(thla))"2+(rbx*cos(th2a)-rax* 

cos(thla))~2); % length of wire 
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delxa=tw/2*(sin(thmla)-cos(thmla)); 

delya=tw/2*(-sin(thmla)-cos(thmla)); 

rmxa=of f_x+cmxa-lena/2 ; 7, XORG 

rmya=off_y+cmya-tw/2; % YORG 

7. Inner via 

if(th<2*pi), 

fprintf (fidl,'# Segment number is '/.i\n',seg_i) ; 

'/.fprintf(fidl,'# Thml='/.6.2f \t Thl='/.6.2f \t Th2=%6.2f \n\thml 

*180/pi,thl*180/pi,th2*180/pi); 

'/.fprintf (fidl,'# delx='/.6.2f Yt dely='/.6.2f \n',delx,dely) ; 

fprintf (fidl, 'wire name=r7.i : len=7.6. 4e : w='/.6 -4e : metal=CM'/.i : xorg='/.6. 4e : 

yorg='/.6. 4e : or ient='/,6. 4e : phase='/,i\n ', seg_i, lena, tw,mtop,rmxa, rmya, 

180/pi*thmla,1); 

if(seg_i>l), 

fprintf (fidl,'join rl r'/.i \n\n',seg_i) ; 

end 

seg_i=seg_i+l; 

'/, Vias on the inner perimeter of the toroid 

f or num=mbot:mtop-1 

fprintf (fidl,'# Connection between vias 7,i\n',seg_i) ; 

'/.fprintf (fidl, 'wire name=r'/,i : len='/,6.4e:w=7,6.4e:metal=CM'/.i : 

xorg='/,6. 4e : 

yorg=7,6. 4e : orient=0 : phase='/,i\n ', ... 

7.seg_i, tw*l. 1, tw*l. 1 ,num, of f _x+rax*cos (thla) -tw/2, of f _y+rax 

*sin(thla)-tw/2,-l); 

seg_i=seg_i+l; 

'/.fprintf (fidl,'# Via number is '/.i\n' ,seg_i) ; 

'/.fprintf (fidl, 'via\nr7,i\nCV'/.i\n'/,i\n'/.i\n-l\n'/.6.4e 7,6.4e\n\n', 

seg_i,num,nx,ny,off_x+rax*cos(thla),off_y+rax*sin(thla)); 

seg_i=seg_i+l; 

fprintf (fidl,'join r'Zi r'/.i \n',seg_i-2,seg_i-l) ; 

end 

'/.fprintf (fidl,'# Via number is '/,i\n' ,seg_i) ; 

'/.fprintf (fidl, 'via\nvx7,i\nCV'/,i\n7.i\n7,i\nl\n7,6.4e 7.6.4e\n\n' ,seg_i, 

mbot,mtop,nx,ny,200+rax*cos(thl),200+rax* sin(thl)); 

'/.fprintf (fidl,'join wl vx'/.i \n\n',seg.i); 

seg_i=seg_i+l; 

end 

7. Outer vias going up 

if(th<(2*pi-2*pi/N)), 

for num=mbot:mtop-l 

fprintf (fidl,'# Connection between vias 7,i\n', seg_i) ; 

'/.fprintf (fidl, 'wire name=r'/.i:len=7,6.4e:w=7,6.4e:metal=CM7.i: 

xorg='/,6. 4e : yorg=7.6. 4e : orient=0 : phase='/,i\n ', ... 

7. seg_i,tw*1.2,tw*1.2,num,off_x+rbx*cos(th2a)-tw/2,off_y+rbx* 

sin(th2a)-tw/2,-l); 

seg_i=seg_i+l; 

'/.fprintf (fidl,'# Via number is 7,i\n',seg.i) ; 

'/.fprintf (fidl, 'via\nr7,i\nCV7,i\n'/.i\n7.i\nl\n7.6.4e 7.6.4e\n\n', 

seg_i,num,nx,ny,off_x+rbx*cos(th2a),off_y+rbx*sin(th2a)); 

seg_i=seg_i+l; 

fprintf (fidl,'join r'/.i r'/.i \n',seg_i-2,seg_i-l) ; 

'/.fprintf (fidl,'# Connection between vias 7,i\n',seg.i) ; 

'/.fprintf (fidl, 'wire name=r'/.i : len=7,6.4e : w=7,6.4e :metal=CM7.i : 

xorg='/,6. 4e : yorg=7.6. 4e : or ient=0 : phase=7.i\n ', ... 

7. seg.i, tw*l. 2, tw*l. 2, num+1, of f _x+rbx*cos (th2a) -tw/2, of f _y+ 

rbx*sin(th2a)-tw/2,-l); 

seg_i=seg_i+l; 
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end 

elseif(th==(2*pi-2*pi/N)), 

fprintf(fidl,'# Wire extension number is %i\n',seg_i); 

fprintf (fidl, ' wire name=r'/,i : len='/,6. 4e : w='/,6. 4e :metal=CM'/.i : xorg='Z6. 4e : 

yorg='/,6.4e:orient='/,6.4e:phase='/.i\n',seg.i,lena,tw,mtop,off_x+rbx* 

cos(th2a),off_y+rbx*sin(th2a)-tw/2,0,l); 

fprintf (fidl,'join rl r'/.i \n\n', seg_i) ; 

seg_i=seg_i+l; 

elseif(th==2*pi), 

for num=mbot:mtop-l 

Xfprintf (fidl, '# Connection between vias Xi\n',seg.i); 

'/.fprintf (fidl,' wire name=rXi : len=%6.4e :w=%6. 4e :metal=CMXi : 

xorg=%6.4e:yorg=%6.4e:orient=0:phase=%i\n', ... 

Xseg_i,tw*1.2,tw*l.2,num,off_x+rbx*cos(th2a)-tw/2,off_y+rbx* 

sin(th2a)-tw/2,-1); 

seg_i=seg_i+l; 

Xfprintf(fidl,'# Via number is Xi\n',seg.i); 

Xfprintf(fidl,'via\nrXi\nCVXi\nXi\nXi\nl\nX6.4e X6.4e\n\n', 

seg.i,num,nx,ny,off_x+rbx*cos(th2a),off_y+rbx*sin(th2a)); 

seg_i=seg_i+l; 

fprintf(fidl,'join rXi rXi \n',seg_i-2,seg_i-l); 

Xfprintf(fidl,'# Connection between vias Xi\n',seg_i); 

Xfprintf(fidl,J wire name=rXi:len=X6.4e:w=X6.4e:metal=CMXi: 

xorg=X6.4e:yorg=X6.4e:orient=0:phase=Xi\n', ... 

X seg_i,tw*l.2,tw*l.2,num+1,off_x+rbx*cos(th2a)-tw/2,off_y+ 

rbx* s in(th2a)-tw/2,-1); 

seg__i=seg„i+l; 

end 

fprintf(fidl,'# Wire extension number is Xi\n',seg.i); 

fprintf(fidl,'wire name=rXi:len=X6.4e:w=X6.4e:metal=CMXi:xorg=X6.4e: 

yorg=X6.4e: orient=X6.4e:phase=Xi\n',seg.i,lena,tw,mtop,off_x+ 

rbx*cos(th2a),of f _y+rbx* sin(th2a)-tw/2,0,-1); 

fprintf(fidl,'join rl rXi \n\nseg.i); 

seg_i=seg_i+l; 

end 

Xend 

%for th=2*pi/N:2*pi/N;2*pi 

thlb=th; 

th2b=th-pi/N; 

ra=rax+tw/2; 

rb=rbx-tw/2; 

ssinb=(rbx*sin(th2b)-rax*sin(thlb)); 

scosb=(rbx*cos(th2b)-rax*cos(thlb)); 

if(ssinb>=0 & scosb>=0) 

thmlb=atan(ssinb/scosb); 

elseif(ssinb>=0 & scosb<=0) 

thmlb=pi+atan(ssinb/scosb); 

elseif(ssinb<=0 & scosb<=0) 

thmlb=pi+atan(ssinb/scosb); 

elseif(ssinb<=0 & scosb>=0) 

thmlb=2*pi+atan(ssinb/scosb); 

end 

cmxb=(rbx*cos(th2b)+rax*cos(thlb))/2; X center of wire x value 

cmyb=(rbx*sin(th2b)+rax*sin(thlb))/2; X center of wire y value 

lenb=sqrt((rbx*sin(th2b)-rax*sin(thlb))"2+(rbx*cos(th2b)-rax* 

cos(thlb))~2); X length of wire 

rmxb=o f f _ x+cmxb-1enb/2 ; X XORG 

rmyb=off_y+cmyb-tw/2; X YORG 
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if(th<2*pi) 

fprintf (fidl, '# Segment number is '/.i\n',seg.i) ; 

Xfprintf (fidl, '# Thml='/.6.2f \t Thl=7.6.2f \t Th2=7.6.2f \n' , 

thml*180/pi,thl*180/pi,th2*180/pi); 

"/.fprintf (fidl, '# delx=7,6.2f \t dely=7.6.2f \n' ,delx,dely) ; 

fprintf (fidl, 'wire name=r"/.i : len=7.6. 4e : w=7.6. 4e :metal=CM'/.i : xorg=7.6. 4e : 

yorg=7.6. 4e : or ient='/.6. 4e : phase=7.i\n ' , seg_i, lenb.tw, mbot, rmxb, 

rmyb,180/pi*thmlb,-l); 

fprintf (fidl, 'join rl r'/.i \n\n', seg.i) ; 

seg_i=seg_i+l; 

end 

end 

for x=2:seg_i-l 

fprintf (fidl,'join rl r'/,i \n',x); 

end 

fprintf(fidl,'set save_matrix=true\n'); 

'/.fprintf (fidl, 'SaveMat=true\n' ) ; 

'/.fprintf (fidl, 'pix rl ,5\n') ; 

for freq=l: 1:0 

'/.fprintf (fidl, '# sim.f requency=7.4. If\n' ,freq) ; 

'/.fprintf (fidl,'pix rl */.i\n',freq) ; 

end 

fprintf(fidl,'exit\n'); 

fclose(fidl); 

grid on 

B.2 square98.m 

% Copyright 0 2002 

% Nader Badr 

% All Rights Reserved 

function []=square98(N,r1, w, s,dy) 

fidl=fopen(['si.i '],'w'); 

fprintf(fidl,'# Toroidal Solenoid transformer Input file to 

ASITICW); 

fprintf (fidl,'# Generated on 7.s\n',datestr(now,-l)) ; 

fprintf(fidl,'# by Nader Badr \n\n\n\n'); fprintf(fidl,'grid 

\n' ) ; fprintf(fidl,'set snap_size=.01 \n'); 

% Input values 

% N= ; % number of loops primar. Must be a multiple of 4 

% rl= ; % Inner width of loop in pri or sec 

*/, w= ; 7. width of the interconnect 

d= ; % thickness of the metal layer 

% s= ; % Spacing of pri-pri and pri-sec 

gap= ; % Spacing of Between loops on the edges 

mtop- ; % Top metal layer 

mbot= ; % Bottom metal layer 

via= ; % via 

xoff= ; % x offset 
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yoff= ; % y offset 

% dy= ; 

% Inner values 

W1 =rl+2*w % Width of the loop from outside edge to outside edge 

Lla=4*w+3*s; % length of inner connection from one winding to 

% the other 

Llb=2*w+s; % length of outer connection from one winding to 

% the other 

W2 =rl+2*w % Width of the loop from outside edge to outside edge 

L2a=2*w+s; % length of inner connection from one winding to 

% the other 

L2b=4*w+3*s;% length of outer connection from one winding to 

% the other 

L3a=(dy-(N/4-l)*(s+Lla)-s)/2; 

seg_i=l; % segment number starts with 1 

nx=l; % number of vias in the x direction 

ny=l; % number of vias in the y direction 

L3a=(dy-(N/4-1)*(s+Lla)-s)/2; 

seg_i=l; 

% Right Leg 

totd=dy+Wl+s-w -2*(w+s) +Wl+s+w; 

% xoffst + left leg + gap + lower leg 

xo=xoff + (Wl+s+w) + L3a + (Lla+s)*N/4 +225; 

% xo=0;yo=0 

% yoff + lower leg 

yo=yoff + (Wl+s+w) -2*(w+s) +225 ; totd-dy+Wl+s-w -2*(w+s) 

+Wl+s+w; cpx=totd/2+450/2; cpy=cpx; 

xo=cpx+dy/2-s-2*w; yo=cpy-dy/2; for i=l:N/4 

if i==l, 

fprintf(fidl,'# Segment number is %i\n',seg_i); 

fprintf(fidl,'wire name=r%i:len=7,6.4e:w=%6.4e:metal=CM%i: 

xorg=%6.4e :yorg=%6.4e: orient=%6.4e:phase=7,i\n',seg.i ,w, 

L3a-w-s,mtop,xo,yo+w+s,0,0); 

else 

fprintf(fidl,'# Segment number is %i\n',seg.i); 

fprintf (fidl, ' wire name=r%i : len=%6. 4e : w='/,6. 4e:metal=CM%i : 

xorg=%6.4e :yorg»7,6.4e: orient=7.6.4e:phase=%i\n',seg.i ,w, 

Lia,mtop>xo,yo+(i-2)*(Lla+s)+(L3a+s),0,0); 

end 

seg_i=seg_i+l; 

fprintf (fidl, '# Segment number is 7.i\n' ,seg_i) ; 

fprintf (fidl > ' wire name=r%i : len=7.6. 4e : w=%6. 4e : metal=CM%i : 

xorg=7.6.4e:yorg=7.6.4e:orient='Z6.4e:phase=7.i\n' ,seg.i,W1 ,w, 

mtop,xo,yo+(i-2)*(Lla+s)+(L3a+s)+Lla-w,0,0); 

seg_i=seg_i+l; 

fprintf (fidl, '# Via number is 7.i\n', seg_i) ; 

fprintf (fidl, 'via\nr%i\nCV%i\n%i\n%i\n-l\n%6.4e 7.6. 4e\n\n ' , 

seg_i,mbot,nx,ny,xo+Wl-w/2,yo+(i-2)*(Lla+s)+(L3a+s)+Lla-w/2); 

seg_i=seg_i+l; 



www.manaraa.com

166 

fprintf (fidl, '# Segment number is '/.i\n', seg.i) ; 

fprintf (fidl, ' wire name=r'/.i : len='/,6. 4e : w=7,6. 4e : metal=CH'/,i : 

xorg='/,6.4e:yorg='/,6.4e:orient='/.6.4e:phase='/,i\n',seg.i,w,Lib, 

mbot,xo+Wl-w,yo+(i-2)*(Lla+s)+(L3a+s)+Lla-w,0,0); 

seg_i=seg_i+l; 

fprintf (fidl, '# Segment number is 7,i\n', seg.i) ; 

fprintf(fidl,'wire name=r%i:len=%6.4e:w=%6.4e:metal-CMXi: 

xorg=7.6.4e:yorg=7.6.4e:orient=7.6.4e:phase=7.i\n',seg.i,Wl,w, 

mbot,xo,yo+(i-2)*(Lla+s)+(L3a+s)+Lla+s,0,0); 

seg_i=seg.i+l; 

fprintf (fidl,'# Via number is 7.i\n', seg.i) ; 

fprintf (fidl, ' via\nr7.i\nCV7.i\n7.i\n7.i\n-l\n7,6. 4e 7.6. 4e\n\n1, 

seg.i,mbot,nx,ny,xo+w/2,yo+(i-l)*(Lla+s)+(L3a+s)+w/2); 

seg_i=seg_i+l; 

for x=seg_i-6:seg_i-l 

fprintf(fidl,'join rl r%i \n',x); 

end 

if i==N/4, 

fprintf (fidl,'# Segment number is %i\n' , seg.i) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal-CM'/.i : 

xorg=7.6.4e:yorg=7.6.4e:orient=7.6. 4e:phase=7,i\n',seg.i,w, 

L3a-w-s,mtop,xo,yo+(i-l)*(Lla+s)+(L3a+s),0,0); 

seg.i=seg_i+l; 

fprintf(fidl,'# Via number is %i\n',seg.i); 

fprintf (fidl, ' vi a\nr 7.i \nC V7. i \n7. i \n7.i \n-1 \n7,6. 4e 7.6. 4e\n\n ', 

seg.i,mbot,nx,ny,xo+w/2,yo+(i-l)*(Lla+s)+(L3a+s)+w/2); 

seg_i=seg_i+l; 

for x=seg_i-2:seg_i-l 

fprintf(fidl,'join rl r%i \n',x); 

end 

end 

end 

seg_j=seg_i; 

7. Right Leg OUTER-

% xoffst left leg + gap + lower leg 

% xo=xoff + (Wl+s+w)+L3a + (Lla+s)*K/4; 

7. yoff + lower leg + gap 

7. yo=yoff + (Wl+s+w) + L3a ; 

for j=l:N/4 

if j==l 

fprintf(fidl,'# Segment number is %i\n',seg.j); 



www.manaraa.com

167 

fprintf (fidl, '«ire name=r'/.i : len=7,6. 4e : w=7.6. 4e : metal=CM7.i : 

xorg=7.6. 4e : yorg='Z6. 4e : orient='Z6. 4e : phase='Zi\n ', seg_j , w, 

L3a-(w+s),mbot,xo+w+s,yo,0,0); 

else 

fprintf (fidl, '# Segment number is 7.i\n', seg_j ) ; 

fprintf (fidl, 'wire name=r'Zi : len=*Z6. 4e : w=7.6. 4e : metal=CM'Zi : 

xorg=7.6. 4e : yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ' , seg.j , «, 

L2a,mbot,xo+w+s,yo+(j-2)*(Lla+s)+(L3a+s)+w+s,0,0); 

end 

seg_j=seg_j+l; 

fprintf(fidl,'# Segment number is %i\n',seg_j); 

fprintf (fidl, ' wire name=r7.i : len=7,6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6.4e: orient=7.6.4e :phase=7.i\n', seg_j ,W1,w.mbot,xo+w+s,yo+(j-2) 

*(Lla+s)+(L3a+s)+w+s+L2a-w,0,0); 

seg_j=seg_j+l; 

fprintf (fidl,'# Via number is 7,i\n' ,seg_j) ; 

fprintf (fidl, ' via\nr7.i\nCV7.i\n7.i\n7.i\n-l\n7.6. 4e 7.6. 4e\n\n ' ,seg_j , 

mbot,nx,ny,xo+s+Wl+w/2,yo+(j-2)*(Lla+s)+(L3a+s)+Lla-3/2*w-s); 

seg_j=seg_j+l; 

fprintf (fidl,'# Segment number is 7.i\n' ,seg_j) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6.4e: orient=7.6.4e :phase=7.i\n', seg_j ,w,L2b,mtop,xo+Wl+s,yo+ ( j-2) 

*(Lla+s)+(L3a+s)+2*(w+s),0,0); 

seg_j=seg_j+l; 

fprintf(fidl,'# Segment number is %i\n',seg_j); 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg='Z6. 4e : 

yorg='/,6.4e : orient=7.6. 4e : phase='/,i\n ', seg_j , Wl, w, mtop, xo+w+s, yo+( j-2)* 

(Lla+s)+(L3a+s)+Lla+2*s+w,0,0); 

seg_j=seg_j+l; 

fprintf (fidl,'# Via number is 7.i\n' ,seg_j) ; 

fprintf (fidl, ' via\nr%i\nCV%i\n%i \n%i \n-l \n%6. 4e 7.6.4e\n\n', seg_j ,mbot, 

nx,ny,xo+w+s+w/2,yo+(j-2)*(Lla+s)+(L3a+s)+Lla+2*s+w+w/2); 

seg_j=seg_j+l; 

for x=seg_j-6:seg_j-l 

fprintf (fidl, 'join rl r7.i \n',x); 

end 

if j==N/4, 

fprintf (fidl,'# Segment number is 7.i\n' ,seg_j) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e 

: yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ', seg_j , w, L3a-w-s ,mbot, xo+w+s, 

yo+(j-1)*(Lla+s)+ (L3a+s)+w+s,0,0) ; 

seg_j=seg_j+l; 

for x-seg_j-2:seg_j-l 

fprintf(fidl,'join rl r%i \n',x); 

end 

end 
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end 

% Left Leg 

% xoffst left leg + lower leg 

% xo=xoff + (Wl+s+w); 

% yoff + lower leg + gap 

I yo-yoff + (Wl+s+w) + L3a ; 

fprintf (fidl, ' cp rl r2 \n') ; fprintf (fidl, 'rotate r2 180\nO; 

dx=Wl+s+w; dy=2*L3a+(N/4-l)*(s+Lla)+s; 

fprintf (fidl, 'move r2 7.6. 4e 0\n' ,-dy-Wl-s+w +2*(w+s)) ; 

fprintf(fidl,'join rl r2\n'); fprintf(fidl,'cp rl sl\n'); 

fprintf(fidl,'rotate si 90\n'); fprintf(fidl,'join rl sl\n'); 

totd=dy+Wl+s-w -2*(w+s) +Wl+s+w; 

% fprintf (fidl, 'move rl 7,6.4e 7.6.4e\n' ,-dy-Wl-s+w +2* (w+s), -Wl-s-w) ; 

% fprintf (fidl, 'move rl 7.6. 4e 7,6.4e\n',totd/2,totd/2) ; 

% PADS 

fprintf(fidl,'# Segment number is l\n'); 

fprintf(fidl,'wire name=p%i:len=%6.4e:w=%6.4e:metal=CM%i:xorg=%6.4e: 

yorg=7.6.4e:orient=7.6.4e:phase=%i\n' , 1,75,75,mtop,xoff+225+totd/2-137.5, 

yoff+50,0,0); 

fprintf(fidl,'# Segment number is 2\n'); 

fprintf (fidl, ' wire name=p%i : len=7.6. 4e : w=7.6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=%6.4e:orient-7.6.4e:phase=7.i\n' ,2,75,75,mtop,xoff+225+totd/2-37.5, 

yoff+50,0,0); 

fprintf(fidl,'# Segment number is 3\n'); 

fprintf (fidl, ' wire name=p%i : len=%6. 4e : w=7.6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=%6.4e:orient=%6.4e:phase=%i\n',3,75,75,mtop,xoff+225+totd/2+62.5, 

yoff+50,0,0); 

% GND CENTRL 

fprintf(fidl,Segment number is 4\n'); 

fprintf (f idl, ' wire name=p7.i : len=%6. 4e : w=7,6. 4e : metal=CM%i : xorg=7.6. 4e : 

yorg=7.6. 4e : or ient=7.6. 4e : phase=7#i\n ' ,4,10,60,mtop, xof f+225+totd/2-105, 

yoff,0,0); 

fprintf(fidl,'# Segment number is 5\n'); 

fprintf (fidl, 'wire name=p7.i : len=7.6. 4e : w=7,6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=%6.4e:orient=%6.4e:phase=%i\n',5,10,60,mtop,xoff+225+totd/2+95, 

yoff,0,0); 

fprintf(fidl,'# Segment number is 6\n'); 

fprintf (fidl, 'wire name=p7.i : len=7,6. 4e:w=7,6. 4e : metal=CMXi : xorg=7,6. 4e : 

yorg=7.6.4e:orient=7.6.4e:phase=%i\n' ,6,210,10,mtop,xoff+225+totd/2-105, 

yoff,0,0); 

% GND CENTRL 

fprintf(fidl,'# Segment number is 7\n'); 

fprintf (fidl, 'wire name=p7.i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=7.6.4e:orient=%6.4e:phase=7.i\n' ,7,15+225+totd/2-100-87.5,30,mtop, 
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xoff+72.5,yoff+72.5,0,0); 

fprintf(fidl,'# Segment number is 8\n'); 

fprintf (fidl, ' wire name=p%i :len='/,6. 4e : w=7.6. 4e :metal=CM'/,i : xorg=X6. 4e : 

yorg='/,6.4e:orient='/,6.4e:phase=7.i\n' ,8,15+225+totd/2-100-87.5,30,mtop, 

xoff+225+totd/2+100,yoff+72.5,0,0) ; 

'/. SUB CONTACTS 

fprintf(fidl,'# Segment number is 9\n'); 

fprintf (f idl, ' wire name=p'/,i : len=7,6. 4e : w='/,6. 4e : metal=CM%i : xorg=7.6. 4e : 

yorg=7,6. 4e : or ient='/,6. 4e : phase=7,i\n ' ,9,20,20,l,xoff+77.5,yoff+77.5,0,0) ; 

fprintf(fidl,'# Segment number is 10\n'); 

fprintf (fidl, ' wire name=p7.i : len=7,6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=%6.4e:orient=X6.4e:phase='/.i\n' ,10,20,20,1,xoff+450+totd-97.5, 

yoff+77.5,0,0); 

for x=2 :10 

fprintf (fidl, 'join pi p7.i \n' ,x) ; 

end 

fprintf(fidl,'cp pi ql\n'); fprintf(fidl,'flipH ql\n'); 

fprintf(fidl,'move ql 0 %6.4e\n',totd+325); 

fprintf(fidl,'join pi ql\n'); fprintf(fidl,'cp pi ql\n'); 

fprintf(fidl,'rotate ql 90\n'); fprintf(fidl,'join pi ql\n'); 

fprintf(fidl,'join rl pl\n'); 

fprintf (fidl, 'rename rl N7.i _R7. i _W7. i _S7.i _D7. i \n ' ,N,rl ,w, s,dy) ; 

fprintf (fidl, 'cifsave N7.i_R7.i_W7.i_S7.i_D7.i N7.i _R7.i_W7.i_S7.i_D7.i. cif \n', 

N,rl,w,s,dy,N,rl,v,s,dy); 

Xfprintf(fidl,'exit'); 

fclose(fidl); 

coml='asitic_sun -8'; tekfile='-t MRC.tek '; logfile='-l 

ASITIClog '; keyfile='-k sl.i '; 

unix([coml tekfile logfile keyfile ]); 

B.3 squares.m 

% Copyright © 2002 

% Nader Badr 

% All Rights Reserved 

function []=squares(N,r1,w,s,dy) 

fidl=fopen(['sl.i1],'w'); 

fprintf(fidl,'# Toroidal Solenoid transformer Input file to 

ASITICXn'); 

fprintf (fidl, '# Generated on '/.sXn' ,datestr(nou,-l)) ; 

fprintf(fidl,'# by Nader Badr \n\n\n\n'); fprintf(fidl,'grid 

\n'); fprintf(fidlset snap_size=.01 \n'); 

% Input values 

% N= 

I rl= 

% v= 

% number of loops primar. Must be a multiple of 4 

% Inner width of loop in pri or sec 

% width of the interconnect 
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d= ; 
7. s= ; 

gap= ; 

mbot= 

via= ; 

xoff= 

yoff= 

% dy= 

% thickness of the metal layer 

% Spacing of pri-pri and pri-sec 

% Spacing of Between loops on the edges 

% Top metal layer 

% Bottom metal layer 

% via 

% x offset 

% y offset 

% Inner values 

W1 =rl+2*w % Width of the loop from outside edge to outside edge 

Lla=4*w+3*s; % length of inner connection from one winding to 

% the other 

Llb=2*w+s; % length of outer connection from one winding to 

% the other 

W2 =rl+2*w % Width of the loop from outside edge to outside edge 

L2a=2*w+s; % length of inner connection from one winding to 

% the other 

L2b=4*w+3*s; % length of outer connection from one winding to 

% the other 

L3a=(dy-(N/4-1)*(s+Lla)-s)/2; 

seg_i=l; % segment number starts with 1 

nxsl; % number of vias in the x direction 

ny=l; % number of vias in the y direction 

L3a=(dy-(N/4-1)*(s+Lla)-s)/2; 

seg_i=l; 

% Right Leg-

totd=dy+Wl+s-w -2*(w+s) +Wl+s+w; 

% xoffst + left leg + gap + lower leg 

xo=xoff + (Wl+s+w) + L3a + (Lla+s)*N/4 +225; 

% xo=0;yo=0 

% yoff + lower leg 

yo=yoff + (Wl+s+w) -2*(w+s) +225 ; totd=dy+Wl+s-w -2*(w+s) 

+Wl+s+w; cpx=totd/2+450/2; cpy=cpx; 

xo=cpx+dy/2-s-2*w; yo=cpy-dy/2; for i=l: N/4 

if i==l, 

fprintf(fidl,'# Segment number is %i\n',seg_i); 

fprintf (fidl, ' wire name=r%i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=7,6. 4e : 

yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ', seg_i, w, L3a-w-s, mtop, xo, yo+w+s ,0,0) ; 

else 

fprintf (fidl, Segment number is 7,i\n',seg.i) ; 

fprintf (fidl, 'wire name=r7.i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=%6. 4e : orient=7.6. 4e :phase=%i\n' , seg_i, w,Lia,mtop,xo,yo+ (i-2) * ( 

Lla+s)+(L3a+s),0,0); 

end 

seg_i=seg_i+l; 

fprintf(fidl,'# Segment number is %i\n',seg_i); 

fprintf(fidl,'wire name=r%i:len=%6.4e:w=%6.4e:metal=CM%i:xorg=%6.4e: 

yorg=7.6. 4e : or ient=7.6. 4e : phase=7.i\n ', seg.i, Wl,w, mtop, xo,yo+( i-2)* (Lla+s) 

+(L3a+s)+Lla-w,0,0); 

seg_i=seg_i+l; 
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fprintf (fidl, Via number is 7.i\n', seg.i) ; 

fprintf (fidl, 'via\nr%i\nCV%i\n%i\n%i\n-l\n%6.4e */.6.4e\n\n' ,seg_i, 

mbot,nx,ny,xo+Wl-w/2,yo+(i-2)#(Lla+s)+(L3a+s)+Lla-w/2); 

seg_i=seg_i+l; 

fprintf(fidl,'# Segment number is %i\n',seg.i); 

fprintf (fidl, * wire name=r%i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=7,6. 4e : 

yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ', seg_i, w, Lib,mbot, xo+Wl-w, yo+ (i-2) * 

(Lla+s)+(L3a+s)+Lla-w,0,0); 

seg_i=seg_i+l; 

fprintf(fidl,'# Segment number is %i\n',seg.i); 

fprintf (fidl, ' wire name=r%i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=*/,6. 4e : 

yorg=%6.4e:orient=%6.4e:phase=%i\n',seg.i,Wl,w,mbot,xo,yo+(i-2)*(Lla+s) 

+(L3a+s)+Lla+s,0,0); 

seg_i=seg_i+l; 

fprintf (fidl, '# Via number is 7.i\n', seg_i) ; 

fprintf(fidl,'via\nr%i\nCV%i\n%i\n%i\n-l\n%6.4e %6.4e\n\n',seg_i,mbot,nx, 

ny,xo+w/2,yo+(i-l)*(Lla+s)+(L3a+s)+w/2); 

seg_i=seg_i+l; 

for x®seg_i-6:seg_i-l 

fprintf (fidl, 'join rl r'/.i \n' ,x) ; 

end 

if i==N/4, 

fprintf (fidl,'# Segment number is */,iW , seg.i) ; 

fprintf (fidl, ' wire name=r%i : len=%6. 4e : w=%6. 4e : metal=CM*/,i : xorg=%6. 4e : 

yorg=%6.4e: or i ent=%6.4e:phas e=% i\n',seg.i,w,L3a-w-s,mtop,xo,yo+(i-1)* 

(Lla+s)+(L3a+s),0,0); 

seg_i=seg_i+l; 

fprintf(fidl,'# Via number is %i\n',seg.i); 

fprintf(fidl,'via\nr%i\nCV%i\n%i\n%i\n-l\n%6.4e X6.4e\n\n',seg.i,mbot, 

nx,ny,xo+w/2,yo+(i-l)*(Lla+s)+(L3a+s)+w/2); 

seg_i=seg_i+l; 

for x=seg_i-2:seg_i-l 

fprintf(fidl,»join rl r%i \n',x); 

end 

end 

end 

seg_j=seg_i; 

7. Right Leg OUTER-

7. xoffst left leg + gap + lower leg 

% xo=xoff + (Wl+s+w)+L3a + (Lla+s)*N/4; 

% yoff + lower leg + gap 
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7. yo=yoff + (Wl+s+w) + L3a ; 

for j-1: N/4 

if j==l 

fprintf (fidl, '# Segment number is 7.i Xn' ,seg_j) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w='/,6. 4e : metal=CM7.i : xorg=7,6. 4e : 

yorg=7.6.4e: orient=7.6.4e:phase=7.i\n', seg_j ,w,L3a-(w+s),mtop,xo+w+s,yo,0, 

else 

fprintf (fidl, '# Segment number is 7.i\n' ,seg_j) ; 

fprintf (fidl, 'wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6. 4e : or ient=7.6. 4e : phase=7.i\n ', seg_j , w, L2a,mtop, xo+w+s, yo+(j-2) » 

(Lla+s)+(L3a+s)+w+s,0,0); 

end 

seg_j=seg_j+l; 

fprintf (fidl, '# Segment number is 7.i\n' ,seg_j) ; 

fprintf (f idl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6.4e:orient=7.6.4e :phase=7.i\n' , seg_j ,W1,w.mtop,xo+w+s,yo+ (j-2)* 

(Lla+s)+(L3a+s)+w+s+L2a-w,0,0); 

seg_j=seg_j+l; 

fprintf(fidl,'# Via number is 7.i\n',seg_j) ; 

fprintf (fidl, ' via\nr7.i \nCV7.i \n7.i W/.i Xn-1 \n7.6. 4e 7.6.4e\n\n' ,seg_j ,mbot, 

nx,ny,xo+s+Wl+w/2,yo+(j-2)*(Lla+s)+(L3a+s)+Lla-3/2*w-s); 

seg_j=seg_j+l; 

fprintf (fidl, '# Segment number is 7,i\n' ,seg_j) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6.4e:orient=7.6.4e :phase=7.i\n' ,seg_j ,w,L2b,mbot,xo+Wl+s,yo+ ( j-2)* 

(Lla+s)+(L3a+s)+2*(w+s),0,0); 

seg_j=seg_j+l; 

fprintf(fidl,'# Segment number is %i\n',seg_j); 

fprintf (f idl, ' wire name=r7,i : len=7,6. 4e : w=7.6. 4e : metal=CM7.i : xorg=7.6. 4e : 

yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ', seg_j , W1,w, mbot, xo+w+s, yo+ (j -2) * 

(Lla+s)+(L3a+s)+Lla+2*s+w,0,0); 

seg_j=seg_j+l; 

fprintf (fidl, '# Via number is 7.i\n' , seg_j ) ; 

fprintf (fidl, ' viaXnr%i\nCV%i\n%i\n%i\n-l\n%6. 4e 7.6. 4e\n\n ',seg.j , 

mbot,nx,ny,xo+w+s+w/2,yo+(j-2)*(Lla+s)+(L3a+s)+Lla+2*s+w+w/2); 

seg_j=seg_j+l; 

for x=seg_j-6:seg_j-l 

fprintf(fidl,'join rl r%i \n',x); 

end 

if j—N/4, 

fprintf (fidl, '# Segment number is 7.i\n' , seg_j ) ; 

fprintf (fidl, ' wire name=r7.i : len=7.6. 4e : w=7.6. 4e : metal=CH7.i : xorg=7.6. 4e : 

yorg=7.6. 4e : orient=7.6. 4e : phase=7.i\n ' , seg_j , w, L3a-w-s, mtop, xo+w+s, yo+ 

(j-1)*(Lla+s)+(L3a+s)+w+s,0,0); 

seg_j=seg_j+l; 

for x=seg_j-2 :seg_j-1 

fprintf(fidl,'join rl r%i \n',x); 

end 
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end 

end 

% Left Leg 

% xoffst left leg + lower leg 

% xo=xoff + (Wl+s+w); 

% yoff + lower leg + gap 

% yo=yoff + (Wl+s+w) + L3a ; 

fprintf(fidl,1cp rl r2 \n') ; fprintf(fidl,'rotate r2 180\n'); 

dx=Wl+s+w; dy=2*L3a+(N/4-l)*(s+Lla)+s; 

fprintf (fidl, 'move r2 7.6. 4e 0\n' ,-dy-Wl-s+w +2* (w+s)) ; 

fprintf(fidl,'join rl r2\n'); fprintf(fidl,'cp rl sl\n'); 

fprintf(fidl,'rotate si 90\n'); fprintf(fidl,'join rl sl\n'); 

totd=dy+W1+s-w -2*(w+s) +Wl+s+w; 

% fprintf (fidl, 'move rl 7,6. 4e 7.6.4e\n',-dy-Wl-s+w +2* (w+s) , -Wl-s-w) ; 

% fprintf (fidl, 'move rl %6.4e 7.6.4e\n' ,totd/2,totd/2) ; 

% PADS 

fprintf(fidl,'# Segment number is l\n'); 

fprintf(fidl,'wire name=p%i:len=%6.4e:w=%6.4e:metal=CM%i:xorg=%6.4e: 

yorg=7.6.4e: orient=7.6. 4e : phase=%i\n' ,1,75,75,mtop,xof f+225+totd/2-137.5, 

yoff+50,0,0); 

fprintf(fidl,'# Segment number is 2\n'); 

fprintf (fidl, ' wire name=p%i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=7.6. 4e : 

yorg=%6.4e:orient=%6.4e:phase=%i\n',2,75,75,mtop,xoff+225+totd/2-37.5, 

yoff+50,0,0); 

fprintf(fidl,'# Segment number is 3\n'); 

fprintf (fidl, ' wire name=p%i : len=7.6. 4e : w=%6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=7.6.4e:orient=7.6. 4e :phase=7.i\n' ,3,75,75,mtop,xoff+225+totd/2+62.5, 

yoff+50,0,0); 

% GND CENTRL 

fprintf(fidl,'# Segment number is 4\n'); 

fprintf (fidl, 'wire name=p'/.i : len=%6. 4e : w=7,6. 4e:metal=CM'/.i : xorg=%6. 4e : 

yorg=7.6.4e:orient=%6.4e:phase=%i\n',4,10,60,mtop,xoff+225+totd/2-105, 

yoff,0,0); 

fprintf(fidl,'# Segment number is 5\n'); 

fprintf (fidl, 'wire name=p7,i : len=%6. 4e : w=%6. 4e : metal=CM%i : xorg=%6. 4e : 

yorg=7.6.4e:orient=%6.4e:phase=%i\n',5,10,60,mtop,xoff+225+totd/2+95, 

yoff,0,0); 

fprintf(fidl,'# Segment number is 6\n'); 

fprintf (f idl,5 wire name=p%i : len=%6. 4e : w=%6. 4e : metal=CM7.i : xorg=%6. 4e : 

yorg=%6.4e:orient=7,6-4e:phase=7,i\n' ,6,210,10,mtop,xoff+225+totd/2-105, 

yoff,0,0); 

% GND CENTRL 
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fprintf(fidl,'# Segment number is 7\n'); 

fprintf(fidl,' wire name=p%i:len=%6.4e:w=%6.4e:metal=CM%i:xorg=%6.4e: 

yorg=%6.4e:orient=%6.4e:phase=7.i\n *,7,15+225+totd/2-100-87.5,30,mtop, 

xoff+72.5,yoff+72.5,0,0); 

fprintf(fidl,'# Segment number is 8\n' ); 

fprintf (fidl,1 wire name=p%i : len=%6. 4e : w=%6. 4e : metal=CM*/,i : xorg=%6. 4e : 

yorg=*/,6.4e:orient=%6.4e:phase=*/,i\n' ,8,15+225+totd/2-100-87.5,30,mtop, 

xoff+225+totd/2+100,yoff+72.5,0,0); 

% SUB CONTACTS 

fprintf(fidl,'# Segment number is 9\n'); 

fprintf (f idl, ' wire name=p7.i : len=%6. 4e : w=%6 . 4e : metal=CM'/,i : xorg=7.6 . 4e : 

yorg=*/,6.4e: orient=7.6.4e :phase=Xi\n1 ,9,20,20,1,xoff+77.5,yoff+77-5,0,0) ; 

fprintf(fidl,'# Segment number is 10\n'); 

fprintf(fidl,'wire name=p%i:len=%6.4e:w=%6.4e:metal=CM%i:xorg=%6.4e: 

yorg=%6.4e:orient=%6.4e:phase=%i\n',10,20,20,1,xoff+450+totd-97.5, 

yoff+77.5,0,0); 

for x=2:10 

fprintf(fidl,'join pi p%i \n',x); 

end 

fprintf(fidl,'cp pi ql\nJ); fprintf(fidl,'flipH ql\n'); 

fprintf (fidl, 'move ql 0 7,6.4e\n' ,totd+325) ; 

fprintf(fidl,'join pi ql\n'); fprintf(fidl,'cp pi ql\n'); 

fprintf(fidl,'rotate ql 90\n'); fprintf(fidl,'join pi ql\n'); 

fprintf(fidl,'join rl pl\n'); 

fprintf(fidl,'rename rl SN%i_R%i_W%i_S%i_D%i\n',N,rl,w,s,dy); 

fprintf(fidl,'cifsave SN%i_R%i_W%i_S%i_D%i SN%i_R%i.W%i_S%i_D%i.cif\n', 

N,rl,w,s,dy,N,rl,w,s,dy); 

Xfprintf(fidl,'exit'); 

fclose(fidl); 

coml='asitic_sun '; tekfile='-t MRC.tek '; logfile='-l 

ASITIClog'; keyfile='-k sl.i'; 

unix([coml tekfile logfile keyfile ]); 
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APPENDIX C. Bond wire code 

C.l gen2m.m 

% Copyright (c) 2001 

% Nader Badr 

% All Rights Reserved 

% This file generates rlgc models of the several cases of bondwire segments 

% All the model files generated by HSPICE are written in one file seg.rlgc 

% Enter geometry of the bondwire 

% (xO.yO) coordinates of point in middle of pcb pad 

% (xl,yl) coordinates of point by edge of pcb pad 

% (x2,y2) coordinates of point close to chip pad ( turn point) 

% (x3,y3) coordinates of point in middle of chip pad 

% The more points the better 

% Written by Nader Badr Spring 2001 

function gen2m(run) fidn=fopen([,bw_tot2.hsp>],'w'); 

f id2=fopen([1bw_ sub.lib'],'w'); 

fprintf(fid2,'* Complete Bond 

wiremodel input file to HSPICE\n'); 

fprintf(fid2, '* Generated on '/.s\n',datestr(now,-l)) ; 

fprintf(fid2,1 * by Nader Badr \n\n\n\n'); 

% Specify length of segment ~ 2*diameter of wire 

%seg_len=bw_diam*2; 

condc = ; fprintf(fid2,: '* 

metal\n',condc); 

condp = ; fprintf(fid2,: '* 

metalW,condp); 

condbw = ; fprintf(fid2,: > •  

bondwireXn',condbw); 

ere- ; fprintf(fid2, '* 

material \n*,erc); 

erp= fprintf(fid2, '* 

material of pcb\n',erp) 

hc= ; fprintf(fid2, '* 

layer of chip \n',hc); 

hp= ; fprintf(fid2, '* 

layer of pcb \n',hp); 

ltc = ; fprintf(fid2, '* 

Itp = ; fprintf(fid2, 

pc= ; fprintf(fid2, '* 

under bondwire \nJ,pc); 

pp= ; fprintf(fid2, ' * 

under bondwire \n',pp); 

rad = ; fprintf(fid2, 

condc=%4.2e \t\tConductivity of chip 

condp=%4.2e \t\tConductivity of pcb 

condbw=%4.2e \t\tConductivity of 

erc=%4.2e m \t\tDielectric constant of 

erp=%4.2e m \t\tDielectric constant of 

hc=%4.2e m \t\tThickness of dielectric 

hp=%4.2e m \t\tThickness of dielectric 

ltc=7,4.2e \t\t\tLoss tangent \n',ltc); 

ltp=%4.2e \t\t\tLoss tangent \n',ltp); 

pc=%4.2e m \t\tExtension of chip bondpad 

pp=%4.2e m \t\tExtension of pcb bondpad 

rad=%4.2e m \t\tRadius of bondwire \n',rad); 
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spacep= ; fprintf (fid2, '* spacep='Z4. 2e m \t\tDistance from 

pad_edge_inner to pad_edge_inner 

at pcb pad_center\n'.spacep); 

spacec= ; fprintf (fid2,1 * sspcec='Z4.2e m XtXtDistance from 

pad_edge_inner to pad_edge_inner 

at chip pad_center\n',spacec); 

tc= ; fprintf (fid2, '* tc=7.4.2e m \t\tThickness of bondpad 

of chip \n',tc); 

tg= ; fprintf(fid2,'* tg='Z4.2e m \t\tThickness of gnd 

plane of pcb \n',tg); 

tp= ; fprintf (fid2, '* tp=7.4.2e m \t\tThickness of bondpad 

of pcb \n' ,tp) ; 

wc= ; fprintf (fid2, >* wc=7.4.2e m \t\tWidth of bondpad 

of chip \n',wc); 

wp= ; fprintf (fid2, '* wp=7.4.2e m \t\tWidth of bondpad 

of pcb \n',wp); 

msl_len= ; 

7. Generate function of bw height 

nop=100; % number of points generated 

x=[0 tc; 

25 tc ; 

225 (.7*(hc+tc)); 

425 (tc); 

450 (tc)]; 

x(:,2)=x(:,2)+l*rad; cc=x(:,2); x(:,l)=x(:,l)*le-6; 

maxdis=x(max(size(x,1)),1) ; 

7.f igure(l) .plot (x( : ,l),x(:,2),'b-') 

sp2=spline(x(:,1),x(:,2)) ; 

xx=linspace(0,maxdis,nop)'; 

d=ppval(sp2,xx)+tg+hp+tp+rad; 

coord=[xx d] ; 

7,figure(2),plot(xx,d, 'b-') 

7.hold on 

%figure(2),stairs(xx,d,'r-') 

len=maxdis/nop; 

fprintf(fid2, '* len=7.4.2e m \t\tLength of segment of line \n',len); 

d=d ; 

fprintf(fid2,'* d \t\t\t\tHeight of bondwire from 

gnd\n\n'); 

y.break 

7. Generate position of bondwires as a function of distance 

spc=wc+spacec; spp=wp+spacep; cl=.5*(wp+spp); 

7. slope 

m=(spc-spp)./(xx(nop)-xx(l)); s=m*xx+spp; posl=cl-s/2; 

pos2=cl+s/2; 

% Create pads 

fprintf(fidn,'\n\n\n\n.LIB 

' '/home/nbadr/RESEARCH/channell/gml_bondwire/bw_sub.lib' ' bwl 

\n') ; 

fprintf(fidn,'\n\n.inc 

''/home/nbadr/RESEARCH/channell/gml_bondwire/msl.rlgc " \n'); 

fprintf(fidn,'.OPTIONS 

SEARCH™''/home/nbadr/RESEARCH/channell/gml_bondwire/ ''\n'); 
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fprintf(fidn,' .OPTION PROBE POSTXn'); 

fprintf(fidn,' +ACCURA 

\n') ; 

fprintf(f idn,' +METHOD=GEAR\n'); 

fprintf(fidn,5 +ABSM0S = 

1.00000E-12\n'); 

fprintf(fidn,' +RELV = 1.00000E-06\n'); 

fprintf(fidn,' +ABSI = 1.00000E-14\n'); 

fprintf(fidn,1 +ABSV 

= 1.00000E-03\n'); 

fprintf(fidn,1 +C0 = 132\n'); 

fprintf(fidn,' 

+ING0LD = 2\nO ; 

fprintf(fidn,' +TLINLIMIT=l\nI); 

fprintf(fidn,' 

+DELMAX=.001n\n\n\n'); 

fprintf(fidn,'II ncla nclb AC=0mA DC=0 pulse(OmA 5mA 0 .05n .05n 

.18 0.5)\n>); 

Xfprintf(fidn,' Ix nodel gnd pulse(0 ~.5nA 0 .499n .0005n .00025n .5n) \n'); 

'/.fprintf (fidn, * .AC LIN 200 1MHz 10GHz\n\n5); 

Xfprintf (fid2, 'Rx nodel gnd lk\nO; 

!rm seg.rlgc !rm msl.rlgc flp=0; fld=0; flc=0; 

fprintf(fid2,'.LIB 

bwl\n\n'); 

fprintf(fid2,'-SUBCKT bwl naXi nbXi naXi nbXi\n',1,1,nop+l,nop+l); 

fprintf(fid2,1\n\n.inc 

*'/home/nbadr/RESEARCH/channel1/gml_bondwire/seg.rlgc'' \n'); 

fprintf(fidn,'XI naXi nbXi naXi nbXi bwl\n',1,1,nop+l,nop+l); 

fprintf(fid2,>Ral nal ncl le-5\n'); 

fprintf(fid2,'Rbl nbl ndl 

le-5\n\n'); 

X msl 

disp(['seg=' num2str(0) ' msl_o_pcbJ]) 

msl_o_pcb(0,condc,condbw,condp,d(1),ere,erp,he,hp,msl_len,ltc,Itp,pc,pp, 

rad,posl(1),pos2(l),tc,tg,tp,wc,wp); 

fprintf(fidn,'WXi naXi nbXi gnd naXi nbXi gndW,0,0,0,1,1); 

fprintf(fidn,,+RLGCmodel=segmodel_Xi N=2 1=X4.2e\n\n',0,msl_len); 

if(run==0) 

Xlnice hspice bw_seg.sp > bw.seg.out 

else 

!nice hspice bw.seg.sp > bw_seg.out 

end 

!rm *.trO 

!rm *.out 

!cp bw.seg.sp bw.segmsl.sp 

!rm bw_seg.sp 

!rm *.ic 

!rm *.stO 

Xbreak 

for nd=l:nop, 

X for segments close to pcb pad 

if (xx(nd)<= wp/2) 

disp([,seg=' num2str(nd) ' bw_o_pcbpad']) 

fprintf(fid2,'* posl=%4.2e \t\t\t\tPosition of bwl_center from pcb 
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pad side\n',posl(nd)); 

fprintf(fid2,pos2=7,4.2e \t\t\t\tPosition of bw2_center from pcb 

pad side\n*,pos2(nd)); 

bw_o_pcbpad(nd,condc,condbw,condp,d(nd),ere,erp,he,hp,len,Itc,Itp,pc, 

pp,rad,posl(nd),pos2(nd),tc,tg,tp,wc,wp); 

% Generate hspice rlgc file that contains the spice elements 

%!mv *.sp bw_seg.sp 

if(run==0) 

%!nice hspice bw.seg.sp > bw_seg.out 

else 

Inice hspice bw.seg.sp > bw.seg.out 

end 

!rm *.trO 

!rm *.out 

!cp bw.seg.sp bw.segp.sp 

!rm bw_seg.sp 

!rm *.ic 

!rm *.stO 

clear fid 

% Write the model in bw.tot.sp 

fprintf (fid2, 'W.i na%i nbXi nc%i nd%i gnd na'/.i nb%i nc'/.i nd%i gnd\n', 

nd,nd,nd,nd,nd,nd+l,nd+l,nd+l,nd+l); 

fprintf(fid2, '+RLGCmodel=segmodel_y.i N=4 l=*/,4.2e\n\n' ,nd,len) ; 

flp=l; 

elseif(xx(nd)> wp/2 & xx(nd)< (maxdis-wc/2)) 

if (flp==l) 

fprintf (fid2,'Ra'/.i ncXi gnd 100G\n' ,nd,nd) ; 

fprintf (fid2, 'Rb'/.i nd'/.i gnd lOOGNnXn',nd,nd) ; 

flp=0; 

end 

disp(['seg=* num2str(nd) ' bw_o_diel>]) 

fprintf(fid2,'* posl=%4.2e \t\t\t\tPosition of bwl_center from pcb 

pad side\n',posl(nd)); 

fprintf(fid2,'* pos2=%4.2e \t\t\t\tPosition of bw2_center from pcb 

pad side\n',pos2(nd)); 

bw_o_diel(nd,condc,condbw,condp,d(nd),ere,erp,he,hp,len,Itc,Itp,pc,pp, 

rad.posl(nd),pos2(nd),tc,tg,tp,wc,wp); 

% Generate hspice rlgc file that contains the spice elements 

%!mv *.sp bw_seg.sp 

'/,Inice hspice bw.seg.sp > bw.seg.out 

if(run==0) 

'/,Inice hspice bw_seg.sp > bw.seg.out 

else 

Inice hspice bw_seg.sp > bw.seg.out 

end 

!rm *.trO 

!rm ».out 

!cp bw.seg.sp bw.segd.sp 

!rm bw.seg.sp 

!rm *.ic 

Irm *.stO 

clear fid 

% Write the model in bw.tot.sp 

fprintf (fid2,'W*/,! na'Zi nb%i gnd na'/.i nb%i gnd\n',nd,nd,nd,nd+l,nd+l) ; 
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fprintf (fid2, ,+RLGCmodel=segmodel_7.i N=2 1=7.4.2e\n\n' ,nd,len) ; 

fld=l; 

elseif(xx(nd)>= (maxdis-wc/2)) 

if(fld==l) 

fprintf (fid2, 'Ra7.i nc%i gnd 100G\n' ,nd,nd) ; 

fprintf (fid2,'Rb7.i nd%i gnd 100G\n\n' ,nd,nd) ; 

fld=0; 

end 

dispQ'seg®' num2str(nd) ' bw„o„chippad']) 

fprintf (fid2, '* pos 1=7.4.2e \t\t\t\tPosition of bwl_center from pcb 

pad sideW ,posl(nd)) ; 

fprintf (fid2, '* pos2=7.4.2e \t\t\t\tPosition of bw2_center from pcb 

pad side\n',pos2(nd)); 

bw_o_chippad(nd,condc,condbw,condp,d(nd),ere,erp,he,hp,len,Itc,Itp, 

pc,pp,rad,pos1(nd),pos2(nd),tc,tg,tp,we, wp); 

% Generate hspice rlgc file that contains the spice elements 

7.!mv *.sp bw_seg.sp 

7. ! nice hspice bw.seg.sp > bw.seg.out 

if(run==0) 

%Inice hspice bw.seg.sp > bw.seg.out 

else 

•nice hspice bw.seg.sp > bw_seg.out 

end 

!rm *.trO 

Irm *.out 

!cp bw.seg.sp bw.segc.sp 

Irm bw_seg.sp 

Irm *.ic 

!rm *.stO 

clear fid 

% Write the model in bw.tot.sp 

fprintf (fid2,'W7.i na%i nb%i nc7.i nd%i gnd na%i nb%i nc7.i nd%i gnd\n', 

nd,nd,nd,nd,nd,nd+l,nd+l,nd+l,nd+l); 

fprintf (fid2, ' +RLGCmodel=segmodel_7,i N=4 1=7,4.2e\n\n' ,nd,len) ; 

end 

end 

fprintf (fid2, ,Ra7.i na%i nc7.i le-5\n' ,nd+l,nd+l,nd+l) ; 

fprintf (fid2, 'Rb%i nb%i nd7.i le-5\n\n' ,nd+l,nd+l,nd+l) ; 

fprintf(fid2,3.ENDS bwl \n\n}); fprintf(fid2,'.ENDL bwl \n\n}); 

fclose(fid2); 

fprintf (fidn, 'X2 na%i nb%i naa%i nbb'/.i bwl\n' ,0,0,0,0) ; 

fprintf(fidn,*.NET v(na%i,nb%i) II R0UT=121.467 RIN=121.467\n>,nd+l,nd+l); 
fprintf(fidn,1.PRINT AC Sll(R) Sll(I) S12(R) S12(I) S21(R) S21(I) 

S22(R) S22(I)\nO; fprintf (fidn,1 .PRINT AC Sll(DB) Sll(P) S12(DB) 

S12(P) S21(DB) S21(P) S22(DB) S22(P)\n'); fprintf(fidn,>.PRINT AC 

\n\n'); fprintf(fidn,1.END \n'); 

felose(fidn); 

% Draw pcb gnd layer 
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axis([xx(l)~.2e-3 1.3*xx(nop) -pos2(l) 2*pos2(l) 0 

max(d)]) 

boxl(xx(l)-.3e-3,-.5*pos2(l),0,2.3*xx(nop),1.5*pos2(l),tg,'b') % pcb gnd 

boxl(xx(l)-.3e-3,-.5*pos2(l),tg,2.3*xx(nop),1.5*pos2(l),tg+hp,'gJ ) % pcb 

dielectric 

boxl(xx(nop)-wc,-.5*pos2(l),tg+hp,2.3*xx(nop),1.5*pos2(l),tg+hp+hc,'c') 

% chip dielectric 

boxl(xx(1)-wp/2,pos1(1)-vp/2,tg+hp,xx(l)+wp/2,pos1(1)+wp/2,tg+hp+tp, ' r ' ) 

% pcb bondpad no. 1 

boxl(xx(l)-.3e-3,posl(1)-wp/2,tg+hp,xx(l)-wp/2,posl(l)+wp/2,tg+hp+tp,'m') 

% wire to pcb bondpad no. 1 

boxl(xx(1)-wp/2,pos2(1)-wp/2,tg+hp,xx(1)+wp/2,pos2(l)+wp/2,tg+hp+tp, ' r ' ) 

I pcb bondpad no. 2 

boxl(xx(1)-.3e-3,pos2(1)-wp/2,tg+hp,xx(1)-wp/2,pos2(1)+wp/2,tg+hp+tp, >m ' ) 

% wire to pcb bondpad no. 2 

boxl(xx(nop)-wc/2,pos1(nop)-wc/2,tg+hp+hc,xx(nop)+wc/2,posl(nop)+wc/2, 

tg+hp+hc+tc,>r') % chip bondpad no. 1 

boxl(xx(nop)+wc/2,pos1(nop)-wc/2,tg+hp+hc,xx(nop)+.2e-3,posl(nop)+wc/2, 

tg+hp+hc+tc,'m') % wire from chip bondpad no. 1 

boxl(xx(nop)-wc/2,pos2(nop)-wc/2,tg+hp+hc,xx(nop)+wc/2,pos2(nop)+wc/2, 

tg+hp+hc+tc, 'r') 7, chip bondpad no. 2 

boxl(xx(nop)+wc/2,pos2(nop)-wc/2,tg+hp+hc,xx(nop)+.2e-3,pos2(nop)+wc/2, 

tg+hp+hc+tc,'m') % wire from chip bondpad no. 2 

grid on 

for i~l:nop-l 

[xs,ys,zs]=cylinder(rad); 

hl(i)=surf(zs*len+xx(i),xs+posl(i),ys+d(i)); 

hold on 

thetal=180/pi*atan((posl(i+1)-posl(i))/(xx(i+l)-xx(i))); 

rotate(hi(i),[0 0 1],thetal/50) 

axis equal 

end 

hold on 

for i=l:nop-l 

[xs,ys,zs]«cylinder(rad); 

h2(i)=surf(zs*len+xx(i),xs+pos2(i),ys+d(i)); 

hold on 

theta2=180/pi*atan((pos2(i+l)-pos2(i))/(xx(i+l)-xx(i))); 

rotate(h2(i),[0 0 1],theta2/50) 

axis equal 

end plot3(xx,posl,d,'b-',xx,pos2,d,'g-') axis equal 

% Draw layers 

save gen.mat disp(['whole interconnect']) 
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C.2 boxl.m 

% Copyright © 2001 

% Nader Badr 

7, All Rights Reserved 

function boxl(xO,yO,zO,xl,yl,zl,C) 

fill3([x0 xl xl xO] ' , [yO yO yO yO] ', [20 zO zl zl] ,C) hold 

fill3([x0 xl xl xO] ' , [yl yl yl yl] ', [zO zO zl zl] ,C) hold on 

fill3([x0 xO xO xO]' , [yO yl yl yO] ', [z0 zO zl zl] ,C) hold on 

fill3([xl xl xl xl] ' ,[yO yl yl yO]>, [zO zO zl zl] ,C) hold on 

fill3([xO xl xl xO] ' ,[yO yO yl yl]', [zO zO zO zO] ,C) hold on 

fill3([x0 xl xl xO] ' ,[yO yO yl yl] ', [zl zl zl zl] ,C) hold on 

grid on 

C.3 msl_o_pcb.m 

% Copyright © 2001 

% Nader Badr 

% All Rights Reserved 

function 

msl_o_pcb(nd,condc,condbw,condp,d,ere,erp,he,hp,len,Itc,ltp,pc,pp,rad, 

psl,ps2,tc,tg,tp,wc,wp) 

% nd Segment and node index 

% len Length of segment of line 

% d Height of bondwire from gnd 

% Bond wire description file. 

% This script generates input file for HSPICE. The model of bondwire is described here. 

% First V model files are generated for every small distance 

% Second HSPICE is run for each element to produce rlgc matrices 

*/,fid=fopen( ['bw.seg' num2str (nd) ' .sp'] , 'w') ; 

fid=fopen('bw_seg.sp','w'); 

fprintf(fid,'* Bond wire input file to HSPICE\n'); 

fprintf(fid,'* Generated on %s\n',datestr(now,-l)); 

fprintf(fid,'* by Nader Badr \n\n\n\n'); 

fprintf(fid,'* nd=%i \t\t\t\tSegment and node index \n\n',nd); 

fprintf (fid, '* condbw='/,4. 2e \t\tConductivity of bondwire\n',condbw); 

fprintf (fid, ' * condc='/,4. 2e \t\tConductivity of chip metal\n' ,condc) ; 

fprintf (fid, ' * condp=7,4.2e \t\tConductivity of pcb metal\n', condp) ; 

fprintf(fid,1 * d=%4.2e m \t\t\tHeight of bondwire from gnd\nJ,d); 

fprintf(fid,'* erc=%4.2e m \t\tDielectric constant of material \n',erc); 

fprintf(fid,'* erp=%4.2e m \t\tDielectric constant of material of pcb\n',erp); 

fprintf(fid,'* hc=%4.2e m \t\tThickness of dielectric layer of chip \n',hc); 
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fprintf (fid, ' * hp='/,4. 2e m \t\tThickness of dielectric layer of pcb \n ', hp) ; 

fprintf (fid,'* len='/,4. 2e m \t\tLength of segment of line \n',len); 

fprintf (fid, '* ltc=7.4.2e \t\t\tLoss tangent \n',ltc); 

fprintf (fid,'» ltp='/,4. 2e \t\t\tLoss tangent \n',ltp); 

fprintf (fid, ' * pc='/,4. 2e m \t\tExtension of chip bondpad under bondwire \n' ,pc) ; 

fprintf (fid,'* pp='/.4. 2e m \t\tExtension of pcb bondpad under bondwire \n ', pp) ; 

fprintf (fid, ' * rad='/.4.2e m \t\tRadius of bondwire \n' ,rad) ; 

fprintf (fid,1 * psl='/,4.2e m \t\tPosition of bwl_center starting at 

pcb pad side\n\n',psl) ; 

fprintf (fid, ' * ps2='/.4.2e m \t\tPosition of bw2_center starting at 

pcb pad side\n\n',ps2); 

fprintf (fid, '* tc='/.4.2e m \t\tThickness of bondpad of chip \n',tc); 

fprintf (fid, ' * tg=7.4.2e m \t\tThickness of gnd plane of pcb \n',tg); 

fprintf (fid, ' * tp=7.4. 2e m \t\tThickness of bondpad of pcb \n' ,tp) ; 

fprintf (fid,'* wc='/,4. 2e m \t\tWidth of bondpad of chip \n',wc); 

fprintf (fid, '* wp='/.4.2e m \t\tWidth of bondpad of pcb \n',wp); 

% bw_o_pcbpad for bondwire over pcb bond pad 

% options 

fprintf(fid,'-OPTION PROBE POSTXn'); fprintf(fid,' 

+DELMAX=35p\n'); fprintf(fid,' +TLINLIMIT=l\n\n'); 

fprintf (fid, 'VIMPULSE na'/.i gnd PULSE 1.8v Ov 5n 70p 70p 180p\n\n\n' ,nd) ; 

% W element 

fprintf (fid,'W/.i na'/.i nb'/.i gnd na'Zi nb'/.i gnd FSmodel=segmodel_'/,i N=2 

l='/,4.2e\n\n\n' ,nd,nd,nd,nd+l,nd+l,nd,len) ; 

% Materials 

fprintf (fid, ' .MATERIAL diel.l DIELECTRIC ER=7,4.2f L0SSTANGENT=7.4. 2e\n ' , erp, ltp) ; 

fprintf (fid, ' .MATERIAL copperp METAL C0NDUCTIVITY=7.4. 2e \n', condp) ; 

^fprintf (fid, ' .MATERIAL copperbw METAL C0NDUCTIVITY=7.4.2e \n\n\n',condbw) ; 

% Shapes 

7.fprintf (fid, ' .SHAPE circle_l CIRCLE RADIUS=7.4.2e\n' , rad) ; 

fprintf (fid, ' .SHAPE rect.l RECTANGLE WIDTH=7.4.2e\n', wp) ; 

fprintf (fid, ' +HEIGHT=7.4. 2e\n\n\n ' ,tp) ; 

7. Defines a layerstack 

fprintf(fid,'.LAYERSTACK stack_l \n')i 

fprintf (fid, ' +LAYER= (PEC, 7.4. 2e) ,\n' ,tg) ; 

fprintf (fid, ' +LAYER=(diel_l ,7,4.2e)\n\n\n' ,hp) ; 

7. Option Settings 

fprintf(fid,'.FSOPTIONS optl \n'); 

fprintf(fid,' +ACCURACY=HIGH 

\n') ; 

fprintf(fid,' +GRIDFACT0R=4 \n'); 

fprintf(fid,' 

+PRINTDATA=YES \n'); 

fprintf(fid,' +C0MPUTEG0=YES \n'); 

fprintf(fid,' +COMPUTEGD=YES \n'); 

fprintf(fid,' +COMPUTERO=YES 

\n') ; 

fprintf(fid,' +COMPUTERS=YES \n\n\n'); 

7. Model Definition 

fprintf (fid, ' .MODEL segmodel_7.i W MODELTYPE=FieldSolver \n ', nd) ; 

fprintf(fid,' +LAYERSTACK=stack_l FS0PTI0NS=optl, 

RLGCFILE=msl. rlgcXn ' ) ; 

Xfprintf (fid, ' +C0NDUCT0R=(SHAPE=circle_1,ORIGIN-(7.4.2e,7.4.2e)\n' ,psl,d) ; 
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'/.fprintf (f id, ' +MATERIAL=copperbw),\n\n' ) ; 

•/.fprintf (fid, ' +CONDUCTOR=(SHAPE=circle_l,ORIGIN= C/,4.2e,%4.2e)\n' ,ps2,d) ; 
'/.fprintf (fid, ' +MATERIAL=copperbu) ,\n\n' ) ; 
fprintf (fid, ' +C0NDUCT0R=(SHAPE=rect_l,0RIGIN=('/,4.2e,'/,4.2e)\n' ,psl,hp+tg); 
fprintf(fid,1 +MATERIAL=copperp),\n\n'); 
fprintf (fid, > +CONDUCTOR= (SHAPE=rect_l, ORIGIN= C/,4. 2e, '/.4. 2e) \n ' ,ps2,hp+tg) ; 

fprintf(fid,' +MATERIAL=copperp),\n\n\n'); 

fprintf(fid,'.TRAN 70p 2n\n'); 
fprintf (fid, ' .PROBE v(na7,i)\n' ,nd+l) ; 
fprintf(fid,'.END\n'); 

fclose(fid); 

C.4 bw_o_pcb.m 

X Copyright © 2001 
% Nader Badr 
7, All Rights Reserved 

function 
bw_o_pcbpad(nd,condc,condbw,condp,d,ere,erp,he,hp,len,ltc,Itp,pc,pp, 
rad,psl,ps2,tc,tg,tp,wc,wp) 
% nd Segment and node index 
% len Length of segment of line 
% d Height of bondwire from gnd 

% Bond wire description file. 

% This script generates input file for HSPICE. The model of bondwire is described here. 
% First W model files are generated for every small distance 
% Second HSPICE is run for each element to produce rlgc matrices 

%fid=fopen(['bw_seg' num2str(nd) '.sp'],'w1); 

fid=fopen('bw_seg.sp','w5); 

Bond wire input file to HSPICE\nJ); 
Generated on 7,s\n' ,datestr(now,-l)) ; 
by Nader Badr \n\n\n\n'); 

nd=%i \t\t\t\tSegment and node index \n\n',nd); 
condbw=%4.2e \t\tConductivity of bondwire\n',condbw); 
condc='/,4.2e \t\tConductivity of chip metal\n',condc) ; 
condp=%4.2e \t\tConductivity of pcb metal\n',condp); 
d=%4.2e m \t\t\tHeight of bondwire from gnd\n',d); 
erc=%4.2e m \t\tDielectric constant of material \n',erc); 
erp=%4.2e m \t\tDielectric constant of material of pcb\n',erp); 
hc=X4.2e m \t\tThickness of dielectric layer of chip \n',hc); 
hp=7,4.2e m \t\tThickness of dielectric layer of pcb \nJ,hp); 
len=%4.2e m \t\tLength of segment of line \n',len)j 
ltc=X4.2e \t\t\tLoss tangent \n',ltc); 
ltp=*/,4.2e \t\t\tLoss tangent \n' ,ltp) ; 
pc=%4.2e m \t\tExtension of chip bondpad under bondwire \n',pc); 

pp=%4.2e m \t\tExtension of pcb bondpad under bondwire \n',pp); 

fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 

fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid, 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid, 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
fprintf(fid,'* 
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fprintf (fid, '* rad='/,4. 2e m \t\tRadius of bondwire \n',rad); 

fprintf(fid,'* psl=7.4.2e m \t\tPosition of bwl_center starting at pcb 
pad side\n\n',psl); 
fprintf (fid,'* ps2='/.4.2e m \t\tPosition of bw2_center starting at pcb 
pad side\n\n',ps2); 
fprintf (fid, '* tc=7,4.2e m \t\tThickness of bondpad of chip \n',tc); 
fprintf (fid, '* tg='/.4.2e m \t\tThickness of gnd plane of pcb \n',tg); 
fprintf (fid, ' * tp='/,4.2e m \t\tThiclmess of bondpad of pcb \n',tp); 
fprintf(fid,1 * wc=%4.2e m \t\tWidth of bondpad of chip \n',wc); 
fprintf (fid, ' * wp=7.4-2e m \t\tWidth of bondpad of pcb \n',wp); 

7. bw_o_pcbpad for bondwire over pcb bond pad 

% options 

fprintf(fid,'.OPTION PROBE POSTNn'); fprintf(fid,' 
+DELMAX=35p\n'); fprintf(fid,' +TLINLIMIT=l\n\n'); 

fprintf(fid,'VIMPULSE na%i gnd PULSE 1.8v Ov 5n 7Op 70p 180p\n\n\n',nd); 

% ¥ element 
fprintf (fid, 'W%i na%i nb7.i nc7.i nd%i gnd na%i nb%i nc7.i nd%i gnd FSmodel=segmodel_7,i N=4 
1=7.4. 2e\n\n\n' ,nd,nd,nd,nd,nd,nd+l ,nd+l ,nd+l ,nd+l ,nd,len) ; 

7. Materials 
fprintf (fid, ' .MATERIAL diel.l DIELECTRIC ER=7.4.2f L0SSTANGENT=7.4. 2e\n ' , erp, Itp); 
fprintf (fid, ' .MATERIAL copperp METAL C0NDUCTIVITY=7.4. 2e \n',condp); 
fprintf (fid, '-MATERIAL copperbw METAL C0NDUCTIVITY=7,4.2e \n\n\n', condbw) ; 

7. Shapes 
fprintf (fid,'.SHAPE circle.l CIRCLE RADIUS=7.4.2e\n', rad); 
fprintf (fid, ' .SHAPE rect.l RECTANGLE WIDTH=7.4.2e\n', wp) ; 
fprintf(fid,' +HEIGHT=%4.2e\n\n\n',tp); 

7. Defines a layerstack 
fprintf(fid,'.LAYERSTACK stack.1 \n'); 
fprintf (fid, ' +LAYER=(PEC,7,4.2e) ,\n' ,tg) ; 
fprintf (fid, ' +LAYER=(diel_l,7.4.2e)\n\n\n' ,hp) ; 

% Option Settings 
fprintf(fid,'.FSOPTIONS optl \n'); 
fprintf(fid,' 
+ACCURACY=HIGH\n ' ) ; 
fprintf(fid,' +GRIDFACT0R=4 \n'); 
fprintf(fid,' +PRINTDATA=YES \n'); 
fprintf(fid,' +C0MPUTEG0=YES 
\n'); fprintf(fid,' +C0MPUTEGD=YES \n'); 
fprintf(fid,'+C0MPUTER0=YES \n'); 
fprintf (fid, ' +COMPUTERS=YES 

\n\n\n'); 

% Model Definition 
fprintf (fid, ' .MODEL segmodel_7.i W MODELTYPE=FieldSolver \n ', nd) ; 
fprintf(fid,' +LAYERSTACK=stack_l FSOPTIONS=optl, 
RLGCFILE=seg.rlgc\n'); 
fprintf (fid, ' +CONDUCTOR=(SHAPE=circle_l ,0RIGIN=(7.4.2e,7,4.2e)\n',psl ,d) ; 

fprintf(fid,' +MATERIAL=copperbw),\n\n'); 

fprintf (fid, ' +C0NDUCT0R= (SHAPE=circle_ 1, ORIGIN- (7.4. 2e, 7.4. 2e) \n ', ps2, d) ; 
fprintf(fid,' +MATERIAL=copperbw),\n\n'); 
fprintf (fid, ' +C0NDUCT0R=(SHAPE=rect_l,0RIGIN=(7.4,2e,7.4.2e)\n',psl,hp+tg) ; 
fprintf(fid,' +MATERIAL=copperp),\n\n'); 
fprintf (fid, ' +C0NDUCT0R=(SHAPE=rect_l,0RIGIN=(7.4.2e,7.4.2e)\n' ,ps2,hp+tg) ; 
fprintf(fid,' +MATERIAL=copperp),\n\n\n'); 
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fprintf(fid,'.TRAN 70p 2n\n1); 
fprintf (fid, * .PROBE v(na*/,i)\n' ,nd+l) ; 
fprintf(fid,1.ENDXn1); 

fclose(fid); 

C.5 bw_o_diel.m 

% Copyright © 2001 
% Nader Badr 
% All Rights Reserved 

function 
bv_o_diel(nd,condc,condbw,condp,d,ere,erp,he,hp,len,ltc,Itp,pc,pp,rad, 
ps1,ps2,tc,tg,tp,wc,wp) 
% nd Segment and node index 
% len Length of segment of line 
% d Height of bondwire from gnd 

% Bond wire description file. 

% This script generates input file for HSPICE. The model of bondwire is described here. 
% First W model files are generated for every small distance 
% Second HSPICE is run for each element to 

% bw.odiel for bondwire over chip pad 

y.fid=fopen([,bw_seg' num2str(nd) '.sp'],'w'); 
fid=fopen('bw_seg.sp','w'); 

fprintf(fid,'* Bond wire input file to HSPICE\n'); 
fprintf(fid,'* Generated on %s\n',datestr(now,-!)); 
fprintf(fid,'• by Nader Badr \n\n\n\n'); 

fprintf(fid,'* nd=%i \t\t\t\tSegment and node index \n\n',nd); 
fprintf(fid,'* condbw=%4.2e \t\tConductivity of bondwire\n',condbw); 
fprintf(fid,'* condc='/,4.2e \t\t Conductivity of chip metal\n',condc) ; 
fprintf(fid,'* condp=%4.2e \t\tConductivity of pcb metal\n',condp); 
fprintf(fid,'* d=%4.2e m \t\t\tHeight of bondwire from gnd\n',d); 
fprintf(fid,'* erc=%4.2e m \t\tDielectric constant of material \n',erc); 
fprintf(fid,'* erp=%4.2e m \t\tDielectric constant of material of pcb\n',erp); 
fprintf(fid,'* hc=%4.2e m \t\tThickness of dielectric layer of chip \n',hc); 

fprintf(fid,hp=%4.2e m \t\tThickness of dielectric layer of pcb \n',hp); 
fprintf(fid,'* len=%4.2e m \t\tLength of segment of line \n',len); 
fprintf(fid,'* ltc=%4.2e \t\t\tLoss têmgent \nJ,ltc); 
fprintf (fid,ltp=*/,4. 2e \t\t\tLoss tangent \n',ltp); 
fprintf(fid,'» pc=%4.2e m \t\tExtension of chip bondpad under bondwire \n',pc); 
fprintf(fid,'* pp=%4.2e m \t\tExtension of pcb bondpad under bondwire \n',pp); 
fprintf(fid,'* rad=%4.2e m \t\tRadius of bondwire \n',rad); 
fprintf(fid,'* psl=%4.2e m \t\tPosition of bwl.center starting at 
pcb pad side\n\n',psl); 
fprintf(fid,}* ps2=%4.2e m \t\tPosition of bw2_center starting at 
pcb pad side\n\n>,ps2); 
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fprintf (fid, ' * tc=7.4.2e m \t\tThiclmess of bondpad of chip \n',tc); 

fprintf (fid, ' * tg=7.4.2e m \t\tThickness of gnd plane of pcb \n',tg) ; 
fprintf (fid,'* tp='/,4.2e m \t\tThiclmess of bondpad of pcb \n',tp); 

fprintf (fid, '* wc='/.4.2e m \t\tWidth of bondpad of chip \n',wc); 
fprintf(fid,'* wp=%4.2e m \t\tWidth of bondpad of pcb \n',«p); 

7. options 

fprintf(fid,'.OPTION PROBE P0ST\n'); fprintf(fid,' 
+DELMAX=35p\n'); fprintf(fid,' +TLINLIMIT=l\n\n'); 

fprintf (fid,'VIMPULSE na'/.i gnd PULSE 1.8v Ov 5n 7 Op 7 Op 180p\n\n\n',nd) ; 

7. W element 
fprintf (fid, 'W%i na'/.i nb'/.i gnd na'/,i nb'Zi gnd FSmodel=segmodel_'/.i N=2 1= 
'/.4.2e\n\n\n' ,nd,nd,nd,nd+l,nd+l,nd,len) ; 

'/, Materials 

fprintf (fid, ' .MATERIAL diel.l DIELECTRIC ER=7.4.2f L0SSTANGENT=7.4. 2e\n ' , erp, Itp); 
fprintf (fid, ' .MATERIAL copperbw METAL C0NDUCTIVITY=7.4.2e \n\n\n', condbw) ; 

7. Shapes 
fprintf (fid, ' .SHAPE circle.l CIRCLE RADIUS='/,4.2e\n', rad); 
'/.fprintf (fid, ' .SHAPE rect_7.i RECTANGLE MIDTH=7.4.2e\n',nd, w2) ; 
7.fprintf (fid, ' +HEIGHT=7.4.2e\n\n\n> ,t2) ; 

7. Defines a lyerstack 

fprintf(fid,'.LAYERSTACK stack_l \n'); 
fprintf(fid,' +LAYER=(PEC,%4.3e)\n',tg); 
fprintf (fid, ' +LAYER=(diel_l,7.4.2e)\n\n\n' ,hp); 

7. Option Settings 
fprintf(fid,'.FSOPTIONS optl \n'); 
fprintf(fid,' +ACCURACY=HIGH 
\n') ; 
fprintf(fid,' +GRIDFACT0R=4 \n'); 

fprintf(fid,' 
+PRINTDATA=YES \n'); 

fprintf(fid,' +C0MPUTEG0=YES \n'); 
fprintf(fid,' +COMPUTEGD=YES \n'); 
fprintf(fid,' +C0MPUTER0=YES 
\n') ; 
fprintf(fid,' +COMPUTERS=YES \n\n\n'); 

7. Model Definition 
fprintf (fid,1 .MODEL segmodel_7.i W MODELTYPE=FieldSolver \n',nd); 
fprintf(fid,' +LAYERSTACK=stack_l FS0PTI0NS=optl, 
RLGCFILE=seg.rlgc\n' ) ; 
fprintf (fid, ' +C0NDUCT0R=(SHAPE=circle_l,0RIGIN=(7,4.2e,7.4.2e)\n' ,psl,d) ; 
fprintf(fid,' +MATERIAL=copperbw),\n'); 
fprintf (fid, ' +C0NDUCT0R=(SHAPE=circle_l,0RIGIN=(7.4.2e,7,4.2e)\n' ,ps2,d) ; 
fprintf(fid,' +MATERIAL=copperbw),\n'); 

fprintf(fid,'.TRAN 70p 2n\n'); 
fprintf (fid, ' .PROBE v(na7.i)\n' ,nd+l) ; 
fprintf(fid,'.END\n'); 

fclose(fid); 
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C.6 bw_o_chippad.m 

% Copyright © 2001 
% Nader Badr 
% All Rights Reserved 

function bw_o_chippad(nd,condc,condbw,condp,d,ere,erp,he,hp,len,ltc,Itp, 

pc,pp,rad,psl,ps2,tc,tg,tp,wc,wp) 
% nd Segment and node index 
% len Length of segment of line 

% d Height of bondwire from gnd 

% Bond wire description file = 

% This script generates input file for HSPICE. The model of bondwire 
is described here. 
% First W model files are generated for every small distance 
% Second HSPICE is run for each element to produce rlgc matrices 

'/.f id=fopen([,bw_seg> num2str(nd) ' .sp'], >w') ; 
fid=fopen(>bw_seg.sp','w'); 

fprintf(fid, 
fprintf(fid, 
fprintf(fid, 

fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 

fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 

fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
pad side\n\n 
fprintf(fid, 
pad side\n\n 

fprintf(fid, 
fprintf(fid, 
fprintf(fid, 
fprintf(fid, 

fprintf(fid, 

* Bond wire input file to HSPICE\n'); 
* Generated on %s\n',datestr(now,-1)); 
* by Nader Badr \n\n\n\n'); 

* nd-*/,i \t\t\t\tSegment and node index \n\n',nd); 
* condbw=y,4.2e \t\tConductivity of bondwireXn', condbw) ; 
* condc=X4.2e \t\tConductivity of chip metal\n',condc); 
* condp=%4.2e \t\tConductivity of pcb metal\n*,condp); 
* d=%4.2e m \t\t\tHeight of bondwire from gnd\n',d); 
* erc=*Z4.2e m \t\tDielectric constant of material \n',erc); 
* erp=%4.2e m \t\tDielectric constant of material of pcb\n',erp); 
* hc=%4.2e m \t\tThickness of dielectric layer of chip \n',hc); 
* hp=%4.2e m \t\tThickness of dielectric layer of pcb \n',hp); 
* len=X4.2e m \t\tLength of segment of line \n',len); 
* ltc=y,4.2e \t\t\tLoss tangent \n',ltc); 
* ltp=y.4.2e \t\t\tLoss tangent \n',ltp); 
* pc=%4.2e m \t\tExtension of chip bondpad under bondwire \n',pc); 
* pp=X4.2e m \t\tExtension of pcb bondpad under bondwire \n',pp); 
* rad=%4.2e m \t\tRadius of bondwire \n',rad); 
* psl=%4.2e m \t\tPosition of bwl.center starting at pcb 
,psl); 
* ps2=%4.2e m \t\tPosition of bw2_center starting at pcb 
,ps2); 
* tc=%4.2e m \t\tThickness of bondpad of chip \n*,tc); 
* tg=y.4.2e m \t\tThickness of gnd plane of pcb \n',tg); 
* tp=%4.2e m \t\tThickness of bondpad of pcb \n',tp); 
* wc=y,4.2e m \t\tWidth of bondpad of chip \n',wc); 
* wp=y.4.2e m \t\tWidth of bondpad of pcb \n',wp); 

% bw_o_chippad for bondwire over chip bond pad 

% options 

fprintf(fid,1.OPTION PROBE POST \n'); fprintf(fid,' 
+DELMAX=35p\n'); fprintf(fid,' +TLINLIMIT=l\n\n'); 

fprintf(fid,'VIMPULSE na%i gnd PULSE 1.8v Ov 5n 7Op 70p 180p\n\n\n',nd); 
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% M element 
fprintf (fid,'W'/.i na'/.i nb'/.i nc'/.i nd'/,i gnd na'/.i nb'/.i nc'/,i nd'/.i gnd FSmodel=segmodel_'/,i 
N=4 1=7,4.2e\n\n\n' ,nd,nd,nd,nd,nd,nd+l ,nd+l ,nd+l ,nd+l ,nd,len) ; 

7. Materials 
fprintf (fid, ' .MATERIAL diel.l DIELECTRIC ER=7,4.2f L0SSTANGENT='/.4. 2e\n >, erp, Itp) ; 
fprintf (fid, ' .MATERIAL diel_2 DIELECTRIC ER='/.4.2f L0SSTANGENT=7.4. 2e\n ', ere, ltc) ; 
fprintf (fid, ' .MATERIAL copperc METAL C0NDUCTIVITY=7.4. 2e \n\ condc); 
fprintf (fid,'.MATERIAL copperbw METAL C0NDUCTIVITY=7.4. 2e \n\n\n', condbw); 

7. Shapes 
fprintf (fid, ' .SHAPE circle.l CIRCLE RADIUS=7.4. 2e\n ', rad); 
fprintf (fid, ' .SHAPE rect.l RECTANGLE WIDTH='/.4.2e,\n', wc) ; 
fprintf (fid, ' +HEIGHT=7.4. 2e\n\n\n ' ,tc) ; 

'/. Defines a layerstack 
fprintf(fid,'.LAYERSTACK stack,1 \n>); 
fprintf (fid, ' +LAYER=(PEC,7.4.2e) ,\n' ,tg) ; 
fprintf (fid, ' +LAYER=(diel_l ,7.4.2e)\n' ,hp) ; 
fprintf (fid, ' +LAYER=(diel_2,7.4. 2e) \n\n\n ' ,hc) ; 

7. Option Settings 
fprintf(fid,'-FSOPTIONS optl \n'); fprintf(fid,' +ACCURACY=HIGH 
\n'); fprintf(fid,' +GRIDFACT0R=4 \n'); fprintf(fid,' 
+PRINTDATA=YES \n'); fprintf(fid,' +C0MPUTEG0=YES \n'); 
fprintf(fid,' +COMPUTEGD=YES \n'); fprintf(fid,' +C0MPUTER0=YES 
\n'); fprintf(fid,' +COMPUTERS=YES \n\n\n'); 

W MODELTYPE=FieldSolver \n' 
.1 FS0PTI0NS=optl, 

7. Model Definition 
fprintf (fid, '. MODEL segmodel_'/.i 
fprintf(fid,' +LAYERSTACK=stack 
RLGCFILE=seg. rlgc\n ' ) ; 
fprintf (fid, ' +CONDUCTOR=(SHAPE=circle_l, 0RIGIN= (7.4. 2e, 7.4. 2e) 
fprintf(fid,' +MATERIAL=copperbw),\n\n'); 
fprintf (fid, ' +C0NDUCT0R= (SHAPE=circle_l, 0RIGIN=(7.4. 2e ,7.4. 2e) 

fprintf(fid,' +MATERIAL=copperbu),\n\n'); 
fprintf (fid, ' +CONDUCTOR=(SHAPE=rect_l, ORIGIN-(7.4. 2e, 7.4. 2e) \n 
fprintf(fid,' +MATERIAL=copperc),\n\n'); 
fprintf (fid, ' +CONDUCTOR=(SHAPE=rect_l, 0RIGIN= (7.4. 2e, 7.4,2e)\n 
fprintf(fid,' +MATERIAL=copperc),\n\n\n'); 

nd) ; 

\n 

\n 

psl,d); 

ps2,d); 

psl,hc+tg); 

ps2,hc+tg); 

fprintf(fid,'.TRAN 70p 2n\n'); 
fprintf (fid, '. PROBE v (na'/.i) \n' ,nd+l) ; 
fprintf(fid,'.END\n'); 

fclose(fid); 

C.7 bw_o_pcbpad. sp 

% Copyright © 2001 
% Nader Badr 
% All Rights Reserved 

* Bond wire input file to HSPICE 
* Generated on 27-Jan-2003 09:06:35 
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* by Nader Badr 

* 
nd= Segment and node index 

* condbw= Conductivity of bondwire 

* condc= Conductivity of chip metal 
* condp= Conductivity of pcb metal 
* d= Height of bondwire from gnd 
* erc= Dielectric constant of material 
* erp= Dielectric constant of material of pcb 

* hc= Thickness of dielectric layer of chip 

* hp= Thickness of dielectric layer of pcb 

* len= Length of segment of line 

* ltc— Loss tangent 

* ltp= Loss tangent 

* pc= Extension of chip bondpad under bondwire 
* pp= Extension of pcb bondpad under bondwire 
* rad= Radius of bondwire 

* 
psl= Position of bwl.center starting at pcb pad side 

* 
ps2= Position of bw2.center starting at pcb pad side 

* tc= Thickness of bondpad of chip 

* tg= Thickness of gnd plane of pcb 

* tp= Thickness of bondpad of pcb 

* wc= Width of bondpad of chip 

* wp= Width of bondpad of pcb 
.OPTION PROBE POST 
+DELMAX=35p 
+TLINLIMIT=1 

VIMPULSE na23 gnd PULSE 1.8v Ov 5n 70p 70p 180p 

W23 na23 nb23 nc23 nd23 gnd na24 nb24 nc24 nd24 gnd 
FSmodel=segmodel_23 N-4 1=4.50e-06 

.MATERIAL diel.l DIELECTRIC ER=3.05 L0SSTANGENT=2.70e-03 

.MATERIAL copperp METAL C0NDUCTIVITY=5.72e+07 .MATERIAL copperbw 
METAL CONDUCTIVITY. 72e+07 

.SHAPE circle.l CIRCLE RADIUS=1.00e-05 .SHAPE rect.l RECTANGLE 
WIDTH=2.00e-04 
+HEIGHT=3.50e-05 

.LAYERSTACK stack.1 
+LAYER=(PEC,3.50e-05), 
+LAYER=(diel.l,7.32e-04) 

.FSOPTIONS optl 
+ACCURACY=HIGH 
+GRIDFACT0R=4 
+PRINTDATA=YES 

+C0MPUTEG0=YES 

+C0MPUTEGD=YES 
+COMPUTERO=YES 
+COMPUTERS=YES 

.MODEL segmodel_23 W MODELTYPE=FieldSolver 
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+LAYERSTACK=stack_1 FS0PTI0NS=optl, RLGCFILE=seg.rlgc 

+C0NDUCT0R=(SHAPE=circle_l,0RIGIN=(1.31e-04,9.24e-04) 

+MATERIAL=copperbw), 

+C0NDUCT0R=(SHAPE=circle_l,0RIGIN=(4.69e-04,9.24e-04) 
+MATERIAL=copperbw), 

+CONDUCTOR=(SHAPE=rect_1,ORIGIN=(1.31e-04,7.67e-04) 
+MATERIAL=copperp), 

+C0NDUCT0R=(SHAPE=rect_1,ORIGIN-(4.69e-04,7.67e-04) 
+MATERIAL=copperp), 

.TRAN 70p 2n .PROBE v(na24) .END 

C.8 bw_o_diel.sp 

7. Copyright © 2001 
7. Nader Badr 
7. All Rights Reserved 

* Bond wire input file to HSPICE 
* Generated on 27-Jan-2003 09:06:57 

* by Nader Badr 

* nd= Segment and node index 

* condbw= Conductivity of bondwire 
* condc= Conductivity of chip metal 
* condp= Conductivity of pcb metal 

* d= Height of bondwire from gnd 
* erc= Dielectric constant of material 

* erp= Dielectric constant of material of pcb 
* hc= Thickness of dielectric layer of chip 
* hp= Thickness of dielectric layer of pcb 
* len= Length of segment of line 
* ltc= Loss tangent 
* ltp= Loss tangent 
* pc= Extension of chip bondpad under bondwire 
* pp= Extension of pcb bondpad under bondwire 
* rad= Radius of bondwire 
* psl- Position of bwl_center starting at pcb pad side 

* ps2= Position of bw2_center starting at pcb pad side 

* tc= Thickness of bondpad of chip 
* tg= Thickness of gnd plane of pcb 
* tp= Thickness of bondpad of pcb 
* wc= Width of bondpad of chip 
* wp= Width of bondpad of pcb 

.OPTION PROBE POST 
+DELMAX=35p 
+TLINLIMIT=1 

VIMPULSE na90 gnd PULSE 1.8v Ov 5n 7Op 70p 180p 
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W90 na90 nb90 gnd na91 nb91 gnd FSmodel=segmodel_90 N=2 1=4.50e-06 

•MATERIAL diel.l DIELECTRIC ER=3.05 L0SSTANGENT=2.70e-03 
•MATERIAL copperbw METAL C0NDUCTIVITY=5.72e+07 

•SHAPE circle.l CIRCLE RADIUS=1.00e-05 .LAYERSTACK stack.l 
+LAYER=(PEC,3.500e-05) 
+LAYER=(diel_l,7.32e-04) 

•FSOPTIONS optl 
+ACCURACY=HIGH 
+GRIDFACT0R=4 

+PRINTDATA=YES 

+C0MPUTEG0=YES 
+COMPUTEGD=YES 
+C0MPUTER0=YES 
+COMPUTERS=YES 

•MODEL segmodel_90 V MODELTYPE=FieldSolver 
+LAYERSTACK=stack_1 FS0PTI0NS=optl, RLGCFILE=seg.rlgc 
+CONDUCTOR=(SHAPE=circle_l,0RIGIN=(2.24e-04,8.38e-04) 
+MATERIAL=copperbw), 
+CONDUCTDR=(SHAPE=circle_l,0RIGIN=(3.76e-04,8.38e-04) 
+MATERIAL=copperbw), 
•TRAN 7Op 2n .PROBE v(na91) .END 

C.9 bw_o_chippad. sp 

% Copyright © 2001 
7, Nader Badr 
% All Rights Reserved 

* Bond wire input file to HSPICE 
* Generated on 27-Jan-2003 09:07:01 
* by Nader Badr 

* 
nd= Segment and node index 

* condbw= Conductivity of bondwire 
* condc= Conductivity of chip metal 
* condp= Conductivity of pcb metal 
* d= Height of bondwire from gnd 

* erc= Dielectric constant of material 
# erp= Dielectric constant of material of pcb 
* hc= Thickness of dielectric layer of chip 

* hp= Thickness of dielectric layer of pcb 

* len= Length of segment of line 

* ltc= Loss tangent 

* ltp= Loss tangent 

* pc= Extension of chip bondpad under bondwire 
* PP= Extension of pcb bondpad under bondwire 

* rad= Radius of bondwire 

* psl= Position of bwl_center starting at pcb pad side 
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* 
ps2= Position of bw2_center starting at pcb pad side 

* tc= Thickness of bondpad of chip 

* 
t6= Thickness of gnd plane of pcb 

* tp= Thickness of bondpad of pcb 

* wc= Width of bondpad of chip 

* wp= Width of bondpad of pcb 

.OPTION PROBE POST 
+DELMAX=35p 
+TLINLIMIT=1 

VIMPULSE nalOO gnd PULSE 1.8v Ov 5n 7Op 70p 180p 

WlOO nalOO nblOO nclOO ndlOO gnd nalOl nblOl nclOl ndlOl gnd 
FSmodel=segmodel_100 N=4 l=4.50e-06 

-MATERIAL diel.l DIELECTRIC ER=3.05 LOSSTANGENT=2.70e-03 
-MATERIAL diel_2 DIELECTRIC ER=4.10 L0SSTANGENT=2.70e-03 
-MATERIAL copperc METAL CONDUCTIVITY'S.72e+07 .MATERIAL copperbw 
METAL C0NDUCTIVITY=5.72e+07 

-SHAPE circle.l CIRCLE RADIUS=1.00e-05 -SHAPE rect.l RECTANGLE 

WIDTH=7.50e-05, 
+HEIGHT=9.90e-08 

. LAYERSTACK stack. 1 
+LAYER=(PEC,3.50e-05), 
+LAYER=(diel_l,7.32e-04) 
+LAYER=(diel.2,4.00e-04) 

-FSOPTIONS optl 
+ACCURACY=HIGH 
+GRIDFACTOR=4 
+PRINTDATA=YES 
+COMPUTEGO=YES 
+COMPUTEGD=YES 
+COMPUTERO=YES 
+COMPUTERS=YES 

.MODEL segmodel_100 W MODELTYPE=FieldSolver 
+LAYERSTACK=stack_l FS0PTI0NS=optl, RLGCFILE=seg.rlgc 
+CONDUCTOR=(SHAPE=circle_l,0RIGIN=(2.38e-04,8.22e-04), 
+MATERIAL=copperbw), 

+C0NDUCT0R=(SHAPE=circle_l,0RIGIN=(3.63e-04,8.22e-04), 
+MATERIAL=copperbw), 

+CONDUCTOR=(SHAPE=rect_l,ORIGIN-(2.38e-04,4.35e-04) 
+MATERIAL=copperc), 

+CONDUCTOR=(SHAPE=re et _1,ORIGIN-(3.63e-04,4.35e-04) 
+MATERIAL=copperc), 

.TRAN 7Op 2n .PROBE v(nalOl) .END 
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C.10 msl.rlgc 

% Copyright © 2001 
'/, Nader Badr 
% All Rights Reserved 

*SYSTEM_NAME : segmodel_0 * 
* Half Space, air 
* Z » 0.000767 
* diel.l H = 0.000732 
* Z = 3.5e-05 

* //// Bottom Ground Plane /////////// 
» Z = 0 

* L(H/m), C(F/m), Ro(Chm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

•MODEL segmodel.O W M0DELTYPE=RLGC, N=2 + Lo = 6.17224e-07 + 
2.79076e-07 6.17224e-07 + Co = 4.49870e-ll + -1.72676e-11 
4.49870e-ll + Ro = 2.49748e+00 + 0.00000e+00 2.49748e+00 + 
Go = 0.00000e+00 + -0.00000e+00 0.00000e+00 + Rs = 

7.54565e-04 + -3.66360e-05 7.54565e-04 + Gd = 3.81593e-13 + 
-1.46469e-13 3.81593e-13 

C.ll seg.rlgc 

'/. Copyright © 2001 
'/. Nader Badr 
% All Rights Reserved 

*SYSTEM_NAME : segmodel.l 

* Half Space, air 
* Z = 0.000767 

* diel_l H = 0.000732 
* Z = 3.5e-05 

*  I  I I I  Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(0hm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_l W MODELTYPE=RLGC, N=4 
+ Lo = 

Co 

Ro 

Go 

8.23556e-07 
2.86665e-07 
5.58297e-07 
2.67712e-07 
3.58533e-ll 
-2.59307e-13 
-3.17548e-ll 
-6.81435e-13 
5.13143e+01 
0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 

8.20179e-07 
2.99289e-07 6.13894e-07 
5.56693e-07 2.79552e-07 6.13991e-07 

3.61139e-ll 
-3.10353e-12 7.36426e-ll 
-3.09675e-11 -1.39719e-ll 7.17802e-11 

5.13143e+01 
0.00000e+00 2.49747e+00 

0.00000e+00 0.00000e+00 2.49747e+00 
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+ Rs 

+ Gd 

-0.00000e+00 

-0.00000e+00 

-0.00000e+00 
5.52622e-03 
6.54639e~05 

-2.06209e-04 

-2.82383e-04 
3.04118g-13 
-2.19952e-15 
-2.69354e-13 
-5.78013e-15 

0.00000e+00 
-0.00000e+00 0.00000e+00 
-0.00000e+00 -0.00000e+00 0.00000e+00 

5.48518e-03 

3.25467e-04 9.96774e-04 

•2.27713e-04 -5.88470e-05 9.92858e-04 

3.06329e-13 
•2.63251e-14 6.24658e-13 

-2.62676e-13 -1.18514e-13 6.08861e-13 

*SYSTEM_NAME : segmodel_2 

* Half Space, air 
* Z = 0.000767 
* diel_l H = 0.000732 
* Z = 3.5e-05 
* //// Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_2 W MODELTYPE=RLGC, N=4 

Lo 

+ Co 

Ro 

Go 

Rs 

+ Gd 

9.13723e-07 
3.06609e-07 
5.19761e-07 
2.74919e-07 
2.41058e-ll 
-4.49933e-13 
-1.93912e-ll 
-8.09211e-13 

5.13143e+01 

0.00000e+00 
0.00000e+00 
0.00000e+00 

0.00000e+00 
-0.00000e+00 
-0.00000e+00 
-0.00000e+00 
4.02138e-03 
2.62283e-05 

5.19958e-05 
-1.91272e-04 
2.04472e-13 

-3.81646e-15 

-1.64482e-13 

-6.86397e-15 

9.07344e-07 
3.27893e-07 6.13504e-07 
5.16697e-07 2.95569e-07 6.13585e-07 

2.44774e-11 
•3.64679e-12 6.27135e-ll 
-1.84365e-11 -1.55111e-ll 6.03940e-11 

5.13143e+01 
0.00000e+00 2.49747e+00 
0.00000e+00 0.00000e+00 2.49747e+00 

0.00000e+00 
-0.00000e+00 0.00000e+00 
•0.00000e+00 -0.00000e+00 0.00000e+00 

4.02332e-03 
1.83622e-04 9.38636e-04 
5.11856e-05 -5.60484e-05 9.35904e-04 

2.07624e-13 

-3.09331e-14 5.31954e-13 
-1.56384e-13 -1.31570e-13 5.12280e-13 

•SYSTEM.NAME : segmodel.3 

* Half Space, air 
* Z = 0.000767 
* diel.l H = 0.000732 
* Z = 3. 5e-05 
* //// Bottom Ground Plane /////////// 
, Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_3 W M0DELTYPE=RLGC, N=4 
+ Lo = 1.00565e-06 

+ 3.34261e-07 9.99365e-07 

+ 4.32532e-07 3.48852e-07 6.11739e-07 
+ 2.75813e-07 4.29454e-07 3.14855e-07 6.11838e-07 
+ Co = 1.65785e-ll 
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+ -1.32014e-12 1.70352e-ll 

+ -1.00191e-ll -3.87957e-12 5.56402e-11 
+ -1.09545e-12 -9.14958e-12 -1.83589e-11 5.34003e-11 
+ Ro = 5.13143e+01 

+ 0.00000e+00 5.13143e+01 

+ 0.00000e+00 0.00000e+00 2.49747e+00 
+ 0.00000e+00 0.00000e+00 0.00000e+00 2.49747e+00 
+ Go = 0.00000e+00 

+ -0.00000e+00 0.00000e+00 
+ -0.00000e+00 -0.00000e+00 0.00000e+00 
+ -0.00000e+00 -0.00000e+00 -0.00000e+00 0.00000e+00 
+ Rs = 3.24386e-03 
+ 6.26517e-05 3.28184e-03 
+ 1.31005e-04 7.57801e-05 9.16040e-04 
+ -9.38620e-05 1.40944e-04 -5.97752e-05 9.12373e-04 
+ Gd = 1.40623e-13 
+ -1.11978e-14 1.44498e-13 
+ -8.49847e-14 -3.29077e-14 4.71957e-13 
+ -9.29189e-15 -7.76095e-14 -1.55726e-13 4.52957e-13 

*SYSTEH_NAHE : segmodel_4 

* Half Space, air 
* Z = 0.000767 
* diel.l H = 0.000732 
* Z = 3. 5e-05 

* //// Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(0hm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

•MODEL segmodel_4 W M0DELTYPE=RLGC, N=2 
+ Lo = 1.05503e-06 
+ 3.73034e-07 1.05503e-06 
+ Co = 1.32639e-ll 

+ -3.39532e-12 1.32639e-ll 
+ Ro = 5.13144e+01 
+ 0.00000e+00 5.13144e+01 
+ Go = 0.00000e+00 
+ -0.00000e+00 0.00000e+00 
+ Rs = 2.94210e-03 

+ 4.39651e-07 2.94210e-03 
+ Gd = 1.12509e-13 

+ -2.88002e-14 1.12509e-13 

*SYSTEM_NAME : segmodel_5 

* Half Space, air 
* Z = 0.000767 
* diel_l H = 0.000732 
* Z = 3.5e-05 

* //// Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(0hm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_5 W MODELTYPE=RLGC, N=2 
+ Lo = 1.06870e-06 
+ 4.06523e-07 1.06870e-06 
+ Co = 1.31065e-ll 

+ -3.87696e-12 1.31065e-ll 
+ Ro = 5.13144e+01 

+ 0.00000e+00 5.13144e+01 
+ Go = 0.00000e+00 

+ -0.00000e+00 0.00000e+00 
+ Rs = 2.94402e-03 
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+ 3.76804e-07 2.94402e-03 
+ Gd = 1.11173e-13 
+ -3.28855e-14 1.11173e-13 

*SYSTEM_NAME : segmodel_6 

* Half Space, air 
* Z = 0.000767 
* diel_l H = 0.000732 
* Z = 3.5e-05 
* //// Bottom Ground Plane /////////// 
* 2 = 0 

* L(H/m), C(F/m), Ho(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_6 W MODELTYPE=RLGC, N=2 
+ Lo = 1.06863e-06 

+ 4.28982e-07 1.06863e-06 
+ Co = 1.33096e-ll 

+ -4.23739e-12 1.33096e-ll 
+ Ro = 5.13144e+01 
+ 0.00000e+00 5.13144e+01 
+ Go = 0.00000e+00 

+ -0.00000e+00 0.00000e+00 
+ Rs = 2.94668e-03 
+ 3.65364e-07 2.94668e-03 
+ Gd = 1.12896e-13 

+ -3.59428e-14 1.12896e-13 

#SYSTEM_NAME : segmodel_7 

* Half Space, air 
* Z = 0.000767 

* diel.l H = 0.000732 
* Z = 3.5e-05 

* //// Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_7 W MODELTYPE=RLGC, N=2 
+ Lo = 1.05482e-06 

+ 4.42684e-07 1.05482e-06 
+ Co = 1.38710e-ll 
+ -4.52054e-12 1.38710e-ll 
+ Ro = 5.13144e+01 
+ 0.00000e+00 5.13144e+01 
+ Go = 0.00000e+00 
+ -0.00000e+00 0.00000e+00 
+ Rs = 2.95085e-03 

+ 3.98482e-07 2.95084e-03 
+ Gd = 1.17658e-13 

+ -3.83446e-14 1.17658e-13 

*SYSTEM_NAME : segmodel_8 
* 

* Half Space, air 
* Z = 0.000767 
* diel.l H = 0.000732 
* Z = 3.5e-05 

* //// Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_8 W M0DELTYPE=RLGC, N=2 
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+ Lo = 1.03419e-06 

+ 4.51961e-07 1.03419e-06 
+ Co = 1.48206e-11 

+ -4.75766e-12 1.48206e-ll 
+ Ro = 5.13144e+01 
+ 0.00000e+00 5.131446+01 
+ Go = 0.00000e+00 

+ -0.00000e+00 0.00000e+00 
+ Rs = 2.95686e-03 
+ 4.53096e-07 2.95685e-03 
+ Gd = 1.25713e-13 

+ -4.03559e-14 1.25713e-13 

*SYSTEM_NAME : segmodel_9 
* 

* Half Space, air 
» 1 - 0.000767 

* diel.l H - 0.000732 
* Z = 3.5e-05 

* llll Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

-MODEL segmodel_9 W MODELTYPE=RLGC, N=2 
+ Lo = 1.01486e-06 

+ 4.67848e-07 1.01486e-06 
+ Co = 1.64746e-ll 
+ -5.25837e-12 1.64746e-11 
+ Ro = 5.13144e+01 
+ 0.00000e+00 5.13144e+01 
+ Go = 0.00000e+00 
+ -0.00000e+00 0.00000e+00 
+ Rs = 2.96668e-03 
+ 4.58444e-07 2.96668e-03 
+ Gd = 1.39742e-13 

+ -4.46031e-14 1.39742e-13 

*SYSTEM_NAME : segmodel_10 

* Half Space, air 
* Z = 0.001167 

» diel.2 H = 0.0004 
* Z = 0.000767 

* diel.l H = 0.000732 
* Z = 3.5e-05 

* llll Bottom Ground Plane /////////// 
* Z = 0 

* L(H/m), C(F/m), Ro(0hm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) 

.MODEL segmodel_10 W MODELTYPE=RLGC, N=4 
+ Lo = 1.00904e-06 
+ 5.06528e-07 1.00910e-06 
+ 2.21635e-07 2.18870e-07 7.38779e-07 
+ 2.09677e-07 2.21991e-07 3.83993e-07 7.38785e-07 
+ Co - 5.77353e-ll 
+ -3.03920e-ll 5.79739e-ll 
+ -6.39302e-12 -5.07314e-12 6.51298e-ll 
+ -4.37475e-12 -6.47059e-12 -3.05837e-ll 6.48906e-ll 
+ Ro = 5.13144e+01 

+ 0.00000e+00 5.13144e+01 
+ 0.00000e+00 0.00000e+00 2.35455e+03 
+ 0.00000e+00 0.00000e+00 0.00000e+00 2.35455e+03 
+ Go = 0.00000e+00 

+ -0.00000e+00 0.00000e+00 
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+ Rs = 

+ 

+ Gd = 

-0.00000e+00 -0.00000e+00 

-0.00000e+00 -0.00000e+00 
1.48708e-04 

0.00000e+00 
-0.OOOOOG+OO 0.00000e+00 

8.66604e-07 
1.67387e-05 
-2.57939e-06 
6.52971e-13 
-3.43726e-13 
-7.230346-14 
-4.94772e-14 

1.21887e-03 

1.47992e-04 
5.97593e-06 
1.11513e-05 

6.55669e-13 
-5.73759e-14 
-7.31806e-14 -3.45894e-13 7.33895e-13 

1.21887e-03 
•1.27744e-04 

7.36601e-13 

C.12 bw_sub.lib 

% Copyright © 2001 
% Nader Badr 
% All Rights Reserved 

* Complete Bond wire model input file to HSPICE 
* Generated on 27-Jan-2003 13:06:44 
* by Nader Badr 

* nd- Segment and node index 

* condbw= Conductivity of bondwire 

* condc= Conductivity of chip metal 
* condp= Conductivity of pcb metal 

* d= Height of bondwire from gnd 
* ere- Dielectric constant of material 
* erp= Dielectric constant of material of pcb 
* he- Thickness of dielectric layer of chip 
* hp= Thickness of dielectric layer of pcb 
* len= Length of segment of line 
* ltc= Loss tangent 
* ltp= Loss tangent 
* pc= Extension of chip bondpad under bondwire 
* pp= Extension of pcb bondpad under bondwire 
* rad= Radius of bondwire 
* psl- Position of bwl_center starting at pcb pad side 

* ps2- Position of bw2_center starting at pcb pad side 

* tc= Thickness of bondpad of chip 
* tg= Thickness of gnd plane of pcb 
* tp= Thickness of bondpad of pcb 
* wc= Width of bondpad of chip 
* wp= Width of bondpad of pcb 

.LIB bwl 

.SUBCKT bwl nal nbl nail nbll 

.inc '/home/nbadr/RESEARCH/channell/gml_bondwire/seg.rlgc' Ral nal 
ncl le-5 Rbl nbl ndl le-5 

* posl=1.00e-04 Position of bwl_center from pcb pad side 
• pos2=5.00e-04 Position of bw2_center from pcb pad side 
W1 nal nbl ncl ndl gnd na2 nb2 nc2 nd2 gnd +RLGCmodel=segmodel_l 
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N=4 1=4.50e-05 

* posl=l.15e-04 Position of bwl.center from pcb pad side 
* pos2=4.85e-04 Position of bw2_center from pcb pad side 
W2 na2 nb2 nc2 nd2 gnd na3 nb3 nc3 nd3 gnd +RLGCmodel=segmodel_2 
N=4 l=4.50e-05 

* posl=l.31e-04 Position of bwl.center from pcb pad side 
* pos2-4.69e-04 Position of bw2_center from pcb pad side 
W3 na3 nb3 nc3 nd3 gnd na4 nb4 nc4 nd4 gnd +RLGCmodel-segmodel_3 
N=4 1=4.50e-05 

Ra4 nc4 gnd 100G Rb4 nd4 gnd 100G 

* posl=1.46e-04 Position of bwl.center from pcb pad side 
* pos2=4.54e-04 Position of bw2_center from pcb pad side 
W4 na4 nb4 gnd na5 nb5 gnd +RLGCmodel=segmodel_4 N=2 l=4.50e-05 

* posl=1.61e-04 Position of bwl.center from pcb pad side 
* pos2=4.39e-04 Position of bw2_center from pcb pad side 
W5 na5 nb5 gnd na6 nb6 gnd +RLGCmodel=segmodel_5 N-2 l-4.50e-05 

* posl=1.76e-04 Position of bwl.center from pcb pad side 
* pos2=4.24e-04 Position of bw2_center from pcb pad side 
W6 na6 nb6 gnd na7 nb7 gnd +RLGCmodel=segmodel_6 N=2 l=4.50e-05 

* posl-1,92e-04 Position of bwl_center from pcb pad side 
* pos2=4.08e-04 Position of bw2_center from pcb pad side 
W7 na7 nb7 gnd naB nb8 gnd +RLGCmodel=segmodel_7 N=2 l=4.50e-05 

* posl=2.07e-04 Position of bvl_center from pcb pad side 
* pos2~3.93e~O4 Position of bw2„center from pcb pad side 
W8 naB nbB gnd na9 nb9 gnd +RLGCmodel=segmodel_8 N=2 l=4.50e-05 

* posl=2.22e-04 Position of bwl.center from pcb pad side 
* pos2=3.78e-04 Position of bw2_center from pcb pad side 
W9 na9 nb9 gnd nalO nblO gnd +RLGCmodel=segmodel_9 N=2 l=4.50e-05 

RalO nclO gnd 100G RblO ndlO gnd 100G 

* posl=2.38e-04 Position of bwl_center from pcb pad side 
* pos2=3.63e-04 Position of bw2_center from pcb pad side 
W10 nalO nblO nclO ndlO gnd nail nbll ncll ndll gnd 
+RLGCmodel=segmodel_10 N=4 l=4.50e-05 

Rail nail ncll le-5 Rbll nbll ndll le-5 

.ENDS bwl 

.ENDL bwl 

C.13 converts.m 

'/, Copyright © 2001 
% Nader Badr 
% All Rights Reserved 
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function convert s(f ilename1,f ilename2,nelem) Loszeros(4,4,nelem); 
Co=zeros(4,4,nelem); Ro=zeros(4,4,nelem); Go=zeros(4,4,nelem); 
Rs-zeros(4,4,nelem); Gd-zeros(4,4,nelem); 

seg=l; for cc*l:l, fid = fopen(filenamel, 'r'); 

% Read one line at a time 
while feof(fid)==0 

line = fgetl(fid); 
len_line=length(line); 
line=[line blanks(15)]; 
len_line=length(line); 
ind= findstr(line.MODEL'); 

if(isempty(ind)==0 & ind ~=0) , 
indn= findstr(line,'N='); 
element _str=line(indn+2:indn+4); 
el_no=str2num(eleoent_str); 

for a=l:el_no 
line = fgetl(fid); 
Lo(a,1 : a,seg)=str2num(1ine(8:max(size(line)))); 

end 
for a=l:el_no 

line = fgetl(fid); 
Co(a,l:a,seg)=str2num(line(8:max(size(line)))); 

end 
for a=l: el.no 
line = fgetl(fid); 
Ro(a,l:a,seg)=str2num(line(8:max(size(line)))); 
end 
for a=l:el_no 
line - fgetl(fid); 
Go(a,l:a,seg)=str2num(line(8:max(size(line)))); 
end 
for a=l: el.no 
line = fgetl(fid); 
Rs(a,1 : a,seg)=str2num(line(8:max(size(line)))); 

end 
for a=l:el_no 
line = fgetl(fid); 
Gd(a,1:a,seg)=str2num(line(8:max(size(line)))); 
end 
seg=seg+l; 

end 
end 

% Upper and lower matrices made symmetric 
fclose(fid); end 

for c=l:seg-1 
for b=l:el_no 

for a=l:el_no 
if(a>b) 

Lo(b,a,c)=Lo(a,b,c); 
C o ( b , a , c ) = C o ( a , b , c ) ;  
G d ( b , a , c ) = G d ( a , b , c ) ;  

end 
end 

end 
end 

fid = fopen(filename2, 'r1); 
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% Read one line at a time 
while feof(fid)==0 

line - fgetl(fid); 
len_line=length(line); 
line=[line blanks(15)]; 

len_line-length(line); 
ind- findstr(line,1.MODEL1); 

if(isempty(ind)==0 & ind *=0), 
indn= findstr(line,'N=5); 
element_str=line(indn+2:indn+4); 
el_no=str2num(element_str); 

for a=l:el_no 
line = fgetKf id) ; 
Lo(a,1:a,seg)=str2num(line(8:max(size(line)))); 
end 
for a=l:el_no 
line = fgetl(fid); 

Co(a,l:a,seg)=str2num(line(8:max(size(line)))); 

end 
for a=l:el_no 
line - fgetKf id); 
Ro(a,l:a,seg)=str2num(line(8:max(size(line)))); 

end 
for a=l:el_no 
line * fgetKf id) ; 
Go(a,1 : a,seg)=str2num(line(8:max(size(line)))); 

end 
for a*l:el_no 
line = fgetKf id); 
Rs(a,1:a,seg)=str2num(line(8:max(size(line)))); 

end 
for a*l:el.no 
line = fgetKf id); 
Gd(a,l:a,seg)=str2num(line(8:max(size(line)))); 
end 
seg=seg+l; 

end 
end 

% Upper and lower matrices made symmetric 

for c=l:seg-l 
for b=l:el.no 

for a=l:el_no 
if(a>b) 

Lo(b,a,c)=Lo(a,b,c); 
Co(b,a,c)=Co(a,b,c); 
Gd(b,a,c)=Gd(a,b,c); 

end 
end 

end 

end 

fseek(fid,0,-1); f=5e9 

R=Ro+sqrt(f)*Rs; G=Go+f*Gd; 

Zo=sqrt((R+i*2*pi*f*Lo)./(G+i*2*pi*f*Co)); 

Zopl.bwl(1 :nelem,l)=Zo(l,1,1 :nelem); 
Zop2_bwl(l:nelem,l)=Zo(2,2,1 :nelem); 

% Odd mode characteristic impedance 
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for c=l:seg-1 
for b=l:el_no 

Ld(b,b,c)=Lo(b,b,c); 

for a=l:el.no 
if(b~=a) 

Ld(b,b,c)=Ld(b,b,c)-abs(Lo(a,b,c)); 

end 
end 

end 
end 

for c=l:seg-1 
for b=l:el_no 

Cd(b,b,c)=0; 
Cd(b,b,c)=sum(abs(Co(:,b,c))); 

end 
end 

for c=l:seg-1 
for b=l:el.no 

Gdd(b,b,c)=0; 
Gdd(b,b,c)=sum(abs(Gd(:, b, c ) ) ) ; 

end 
end 

Rodd=Ro+sqrt(f)*Rs; 

Xsave test1.mat 
Gddf=Go+f*Gdd; 

Zod=sqrt((Rodd+i*2*pi*f*Ld)./(Gddf+i*2*pi*f*Cd)); 
Zodpl_bwl(l:nelem,l)=Zod(l,1,1 :nelem); 
Zodp2_bwl(1 :nelem,l)=Zod(2,2,1:nelem); 

% Even mode characteristic impedance 

for c*l:seg-1 
for b=l: el.no 

Le(b,b,c)=0; 

Le(b,b,c)=sum(abs(Lo(:,b,c))); 

end 
end 

for c=l:seg-1 
for b=l:el_no 

for a=l:el.no 
Ce(b,b,c)=Co(b,b,c); 

if(b~=a) 
Ce(b,b,c)=Ce(b,b,c)-abs(Co(a,b,c)); 

end 
end 

end 
end 

for c=l:seg-1 
for b=l: el.no 

Gde(b,b,c)=0; 

Gde(b,b,c)=sum(abs(Gd(:,b,c))); 

end 

end 
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Re=Ro+sqrt(f)*Rs; Gdef-Go+f•Gde; 

Ze=sqrt((Re+i*2*pi*f*Le)./(Gdef+i*2*pi*f*Ce)); 
Zepl_bwl(1:nelem,l)=Ze(l,1,1 :nelem); 
Zep2_bwl(1 :nelem,1)=Ze(2,2,1:nelem); 

save segl.mat 

figure(2),plot(abs(Zopl_bwl),Jro-') hold on 
figure(2)>plot(abs(Zodpl_bwl),'kd-') hold on 
figure(2),plot(abs(Zepl_bwl),Jg"-J) hold on figure(2),legend('Zol 

o-',1Zoddl d-',5 Ze ~-',0) 

*/.plot(R,y, 'o') 
fclose(fid); 
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